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The spacetime thermodynamics conjecture

Drawing an analogy from black hole (BH)
thermodynamics, one can apply the first law dE = TdS
to the Universe apparent horizon H and obtain the
Friedmann equations.
Starting from the radius of the apparent horizon

r̃A = 1 /
√
H2 + k

a2
, its temperature TH = 1 / 2πr̃A and

the heat flow crossing it δQ = −dE = A(ρm + pm)Hr̃Adt,
Cai and Kim [2005]

Assuming the Hawking entropy Sh =
A
4G

where A = 4πr̃ 2A:

− 4πG (ρm + pm) = Ḣ − k

a2
, (1)

8πGρm
3

= H2 +
k

a2
− Λ

3
(2)

.
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Extending up to Wald–Gauss–Bonnet (WGB)

entropy

From the EH action one obtains the Bekenstein-Hawking
entropy of a BH: IEH −→ SBH

When the action in 4D is extended up to the GB term,
then according to Wald [1993] the BH entropy will be
also extended IEH + IGB −→ SBH + SGB :

SWGB =
A

4G
+

2πα̃

G
χ(h). (3)

where h, the BH horizon, is a S2 sphere, thus its Euler
characteristic is χ(h) = 2.
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Second law violation during BH merging

χin =χ(S
2) + χ(S2) = 4

χf =χ(S
2) = 2

δχ =χf − χin = −2

During BH merging there
is an integer decrease of
SWGB violating the second
thermodynamical law,
Sarkar and Wall [2011].

Vice versa, during BH
formation δχ = 2
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Resolving the the second law violation

By demanding that the topology of the causally
connected boundaries ∂M = H

⋃N
i=1 hi remain

constant χ(H) +
∑N

i=1 χ(hi) = cons.

each time a BH horizon is formed, two puncture disks
open up on the apparent horizon δχ(H) = −2

while each time two BH horizons merge into one, two
disk punctures close up, δχ(H) = 2.
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and δNmerg BHs merge
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Modified Friedman equations from WGB entropy

If instead of the standard Hawking entropy we implement
the WGB entropy into the first law dE = TdS , follow the
steps in the spacetime thermodynamics procedure and
transform per redshift, then we obtain:

H2(z) =
8πG

3
ρm+k(1+z)2+

Λ

3
−8ã

∫ z

zi

[H2+k(1+z)2]2
dN

dz
dz .

(5)

absorbing the extra terms in the DE density we define:

ρDE (z) =
3

8πG

{
Λ

3
− 8ã

∫ z

zi

[H2 + k(1 + z)2]2
dN

dz
dz

}
,

(6)
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Black hole formation and merger rates

From the Star Formation Rate (SFR) best fit model of
Madau and Dickinson [2014]

ψ(z) = 0.015
(1 + z)2.7

1 + [(1 + z) /2.9]5.6
M⊙year

−1Mpc−3, (7)

we have estimated the rate of the active number of BHs
per redshift inside the apparent horizon

dN(z)

dz
=C

ψ(z)

H4(z)(1 + z)
, (8)

where we have absorbed all the astrophysical parameters

C ≡ 4π

3

(1− fbin × fmerge) fBH
⟨mprog⟩

. (9)
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The WGB cosmological scenario

Assuming a flat Universe (k = 0) and inserting the
expression for the active BHs rate we acquire the basic
expressions of the model:

H2(z) = H2
0Ωm0(1+ z)3+

Λ

3
− 8α̃C

∫ z

zi

ψ(z)

(1 + z)
dz , (10)

ρDE (z) =
3

8πG

(
Λ

3
− 8α̃C

∫ z

zi

ψ(z)

(1 + z)
dz

)
, (11)

wDE (z) = −1− 2α̃Cψ(z)
Λ
4
− 6α̃C

∫ z

zi

ψ(z)
(1+z)

dz
, (12)
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Parameters of the model

The integral can be evaluated in terms of the
hypergeometric function 2F1(a, b; c ; z), and gives∫

ψ(z)

(1 + z)
dz = 0.37037 · (1 + z)2.7 (13)

2F1

(
0.482143, 1.0; 1.48214; −0.00257378 · (1 + z)5.6

)
.

Range of the involved parameters according to the
literature.

Parameter Value

fBH 0.1% to 5%
⟨mprog⟩ 25 to 40 M⊙
fmerge 1% to 10%
fbin 50% to 80%
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Cosmic evolution

α̃ > 0

α̃ < 0

In all graphs we have used the models parameters |α̃| = 105 (in H0 units), fBH = 0.025,

mprog = 30M⊙, fbin = 0.65, fmerge = 0.05 and we have implemented ΩDE0 = 0.69.
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Alleviating the H0 tension

The normalized H(z)/(1 + z3)
parametric dependence

In the upper

graph we have set fBH = 0.025, while in the lower

graph α̃ = 2.3 × 105.In both graphs we have used
mprog = 30M⊙, fbin = 0.65, fmerge = 0.05 and we
have set Ωm0 = 0.31.

The DE equation of state parameter wDE(z)
parametric dependence

In the upper graph we have used fBH = 0.025 and in

the lower graph α̃ = 2 × 105 in H0 units. The other
model parameters used in both graphs are
mprog = 30M⊙, fbin = 0.65, fmerge = 0.05, and we
have imposed ΩDE0 = 0.69.
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Constraining the model’s parameter space

In order to validate our results, we confront the scenario
with observational data from Supernovae Type Ia (SNIa)
and Cosmic Chronometers (CC) using the Cobaya code
Torrado and Lewis [2021].

Parameters 1σ Values

H0 75.2± 4.7 km/s/Mpc

Ωm0 0.38± 0.05

α̃ (9.4± 7.1)× 104

ΩDE0 0.62± 0.05

rdrag 212.1± 31.2 Mpc

Observational constraints at 1σ confidence level.

We have fixed the

astrophysical

parameters as:

fBH = 0.025,

mprog = 30M⊙,

fbin = 0.65,

fmerge = 0.05 so as to

constrain the free

parameter α̃.
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Bayesian analysis of the parameter space

The 1σ and 2σ iso-likelihood contours for
Wald-Gauss-Bonnet topological dark energy, for the 2D
subsets of the parameter space using Cobaya code.
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Alleviating the σ8 tension

DE does not cluster, hence modifications on the
overdensity evolution will depend mainly on H :

δ′′m +

(
H ′(z)

H(z)
− 1

1 + z

)
δ′m − 3 Ωm0 H

2
0 (1 + z)

H2
δm = 0.

(14)

after extracting the solution for δm(z) we calculate the
important physical observable

f σ8 ≡ f (z)σ(z), (15)

where f (z) := −dlnδm(z)
dlnz

and σ(z) := σ8
δm(z)
δm(0)

.
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Alleviating the σ8 tension

Evolution of f σ8 in

Wald-Gauss-Bonnet cosmology with α̃ = 4.5 · 105 in units where 8πG = 1, and with fBH = 0.025,

mprog = 30M⊙, fbin = 0.65, fmerge = 0.05 (red dashed), as well as in ΛCDM paradigm (black solid).

Additionally, the blue data points are from Baryonic Acoustic Oscillations (BAO) observations in SDSS-III

DR12 Gil-Maŕın et al. [2018], while the gray data points at higher redshifts are from SDSS-IV DR14 Hou

et al. [2018], Zhao et al. [2019], Gil-Maŕın et al. [2018].
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Conclusion

In summary Wald Gauss Bonnet scenario has the
potential to alleviate the H0 and the σ8 tension.

Publications regarding this work:

”Topological dark energy from black-hole formations and
mergers through the gravity-thermodynamics approach”
https://doi.org/10.1103/PhysRevD.111.103514

”Using Wald-Gauss-Bonnet topological dark energy to
simultaneously alleviate the H0 and σ8 tensions”
https://doi.org/10.48550/arXiv.2501.15927

Thank you for your
attention!!!

tsilioukas@sch.gr
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