

Testing DDE and Constraining high-z reionization with Cosmological Data arXiv: 2505.02932, 2506.19096

Speaker: Hanyu Cheng

chenghanyu@sjtu.edu.cn

Tsung-Dao Lee Institute(China) & The University of Sheffield(UK)

June 25, 2025

Constraining Pressure-Based Dynamical Dark Energy(DDE) Models with Latest Cosmological Data

2 Constraining exotic high-z reionization histories with Gaussian processes and the cosmic microwave background

DESI DR2 Result

CPL Parametrization:

 $w(a) = w_0 + w_a(1-a)$

- ▶ Taylor expansion of EoS w
- \blacktriangleright w_0 : present-day value
- \blacktriangleright w_a : time evolution
- $\Lambda \text{CDM: } w_0 = -1, w_a = 0$

DESI Finding:

- Deviation from ΛCDM at $> 2\sigma$
- ▶ Hints at dynamical DE
- CMB+DESI+DESY5 shows 4.2σ preference over ΛCDM

Our Approach: Pressure Parametrization

Alternative to CPL:

▶ Taylor expansion for **pressure** p, not EoS w

$$p = -p_0 + (1-a)p_1 + (1-a)^2 p_2 + \dots$$

- ► Free Parameters: $\Omega_{1,2} \equiv \frac{3}{4} \frac{p_{1,2}}{\rho_{\text{crit}}}$
- $\Omega_{\text{DE},0} = f(p_0, p_1, p_2) = 1 \Omega_{\text{m}} \Omega_{\text{k}} \Omega_{\text{r}}$
- ▶ Independent consistency check

Statistical Methods:

- 1 $\Delta \chi^2$ test:
 - $\blacktriangleright \Delta \chi^2 = \chi^2_{\rm DDE} \chi^2_{\Lambda \rm CDM}$
 - Convert to $N\sigma$ significance
- **2** Bayesian Evidence:
 - $\blacktriangleright \Delta \ln \mathcal{Z} = \ln \mathcal{Z}_{\text{DDE}} \ln \mathcal{Z}_{\text{ACDM}}$
 - ► Jeffreys' scale interpretation

李政道研究开

Tools: CAMB, Cobaya, getdist, MCEvidence^a

 a https://github.com/williamgiare/wgcosmo

The dark energy (DE) pressure can be expanded in a Taylor series around the present epoch (A. A. Sen, arXiv:0708.1072):

$$p(a) = -p_0 + \sum_{n=1}^{\infty} \frac{(1-a)^n}{n!} p_n , \qquad (1.1)$$

where $-p_0$ is the current DE pressure and p_n are the higher-order coefficients. The DE density then satisfies the continuity equation:

$$\dot{\rho} + 3H(p+\rho) = 0.$$
 (1.2)

First-Order Expansion Model

Using the first-order term in (1.1), the DE energy density evolves as:

$$\rho(a) = \rho_{\text{DE},0} - \frac{3}{4}(1-a)\,p_1\,,\tag{1.3}$$

where $\rho_{DE,0}$ is the present DE density and p_1 is the first-order pressure coefficient. Defining the dimensionless parameters

$$\Omega_{\rm DE,0} \equiv \frac{\rho_{\rm DE,0}}{\rho_{\rm crit}}, \quad \Omega_1 \equiv \frac{3}{4} \frac{p_1}{\rho_{\rm crit}}, \quad \rho_{\rm crit} = \frac{3H_0^2}{8\pi G}, \tag{1.4}$$

we can rewrite (1.3) as

$$\rho(a) = \rho_{\rm DE,0} \Big[1 + (a-1) \frac{\Omega_1}{\Omega_{\rm DE,0}} \Big] \,. \tag{1.5}$$

The corresponding equation-of-state parameter is

$$w_{\rm DE}(a) = -1 + \frac{1}{3} \frac{\Omega_1 a}{\Omega_1 (1-a) - \Omega_{\rm DE,0}}$$

1.6

Pole in the Equation of State

意 查改道研究所 TSUNG-DAO LEE INSTITUTE

A singularity appears in $w_{\text{DE}}(a)$ when the denominator of (1.6) vanishes, at the scale factor

Second-Order Expansion Model

Including terms up to second order in (1.1), and defining

$$\Omega_2 \equiv \frac{3}{4} \frac{p_2}{\rho_{\rm crit}} \,, \tag{1.8}$$

the DE density becomes:

$$\rho(a) = \rho_{\text{DE},0} \left[1 + (a-1) \left(\frac{\Omega_1 + \Omega_2}{\Omega_{\text{DE},0}} \right) + \frac{2}{5} (1-a^2) \frac{\Omega_2}{\Omega_{\text{DE},0}} \right].$$
(1.9)

The equation-of-state parameter is then:

$$w_{\rm DE}(a) = -1 + \frac{1}{3} \frac{\left(\Omega_1 + (1 - \frac{4}{5}a)\,\Omega_2\right)a}{\left[\Omega_1 + \frac{3}{5}(1 - \frac{2}{3}a)\,\Omega_2\right](1 - a) - \Omega_{\rm DE,0}}$$

This expression can exhibit poles when the denominator vanishes.

(1.10)

Comprehensiveness of the Second-Order Model (@

Fixing $\Omega_2 = 1$ and $\Omega_{DE,0} = 0.7$ while varying Ω_1 , the model can reproduce:

- Quintessence behavior $(-1 < w_{\text{DE}} < -\frac{1}{3}),$
- ▶ Phantom DE $(w_{\text{DE}} < -1)$,
- ▶ Phantom crossing (w_{DE} crosses -1), and
- ▶ Poles in w_{DE} where ρ_{DE} changes sign.

First-Order Expansion Results

Dataset	Ω_1	H_0	Ω_m	$\Delta \chi^2_{\Lambda { m CDM}}$
CMB only	$0.89\substack{+0.62\\-0.14}$	83^{+10}_{-7}	$0.217\substack{+0.019 \\ -0.074}$	-4.13
CMB+SDSS	$0.16\substack{+0.12 \\ -0.11}$	69.3 ± 1.3	0.297 ± 0.011	0.23
CMB+DESI	$0.095\substack{+0.12\\-0.11}$	69.3 ± 1.1	0.2946 ± 0.0090	0.7
CMB+PP	-0.062 ± 0.075	66.68 ± 0.76	0.3221 ± 0.0084	0.34
CMB+SDSS+PP	-0.032 ± 0.068	67.40 ± 0.64	0.3132 ± 0.0065	0.28
CMB+DESI+DESY5	-0.162 ± 0.067	66.98 ± 0.56	0.3131 ± 0.0053	-7.35
CMB+DESI+PP	-0.072 ± 0.068	67.74 ± 0.61	0.3068 ± 0.0056	-0.33

Key Findings

- \triangleright CMB+SDSS, CMB+DESI trend in the right direction to alleviate H_0 and S_8 tensions
- CMB+DESI+DESY5 shows > 2σ deviation from Λ CDM
- Other cosmological parameters remain close to Planck ΛCDM values

First-Order Expansion Results

H. Cheng et al. arXiv:2505.02932

- CMB+DESI: $H_0 = 69.3 \pm 1.1 \text{ km/s/Mpc}$ $\Omega_m = 0.2946 \pm 0.0090 \text{ ;}$ CMB+PP: $H_0 = 66.68 \pm 0.76 \text{ km/s/Mpc}$
 - $\Omega_m = 0.3221 \pm 0.0084$
- Adding SNe data pulls H_0 and Ω_m toward Planck values

Second-Order Expansion Results

Dataset	Ω_1	Ω_2	$\Delta \chi^2_{\Lambda { m CDM}}$
CMB	$0.42^{+1.1}_{-0.83}$	> -0.0245	-5.34
CMB+SDSS	$-0.64^{+0.41}_{-0.86}$	> 1.23	-1.81
CMB+DESI	$-1.25^{+0.21}_{-0.53}$	> 2.69	-6.46
CMB+PP	$-0.52\substack{+0.39\\-0.65}$	$1.4^{+2.0}_{-1.1}$	-0.93
CMB+SDSS+PP	-0.72 ± 0.33	1.96 ± 0.92	-3.92
CMB+DESI+DESY5	$-1.21\substack{+0.19\\-0.31}$	$2.94^{+1.0}_{-0.31}$	-19.24
CMB+DESI+PP	-0.84 ± 0.29	2.15 ± 0.80	-6.36

Strongest Evidence

CMB+DESI+DESY5:

- 4σ preference over ΛCDM
- Bayesian factor $\Delta \ln \mathcal{Z} = 3.67$

Key Features

Strong negative correlation between Ω_1 and Ω_2 .

Evolution of Dark Energy Density

First-Order Model:

- ▶ Mild evolution
- ▶ $\rho_{DE}(a)/\rho_{DE,0}$ stays near unity
- ▶ Narrow confidence intervals

Second-Order Model:

- Deviate ΛCDM CC (Largest CMB+DESI+DESY5 more than 2 σ)
- ▶ Non-monotonic behavior
- ▶ Peak at $a \approx 0.7 0.8$ $(z \approx 0.3 0.4)$

H. Cheng et al. arXiv:2505.02932

Equation of State Evolution

Key Features:

- First-order: Stays in quintessence regime
- Second-order: Crosses phantom divide $(w_{\rm DE} = -1)$ at $a \approx 0.7 - 0.8$ $(z \approx 0.3 - 0.4)$
- > Agreement with CPL at late times

Present-day EoS:

$$w_0 \equiv w_{DE}(a=1)$$
$$w_a \equiv -\frac{dw_{DE}}{da}\Big|_{a=1}$$

First-Order:

- ► Tight constraints
- \blacktriangleright Near ACDM point
- ▶ Strong w_0 - w_a degeneracy

w_0 - w_a Parameter Space

Second-Order:

- ▶ $w_0 > -1$ (quintessence today)
- $w_a < 0$ (evolution toward phantom)

Dataset Comparison

 $\mathrm{DESI} \rightarrow \mathrm{stronger}$ DDE preference than SDSS

DESY5 \rightarrow stronger DDE preference than PP

First	Order	Model
LILDO	Oraci	mouci

Dataset	$\Delta \chi^2_{ m min,CPL}$	$\Delta \ln \mathcal{Z}_{\rm CPL}$
CMB	0.96	0.55
CMB+SDSS	2.68	1.21
CMB+PP	1.85	2.05
CMB+SDSS+PP	4.45	0.93
CMB+DESI	8.25	-1.94
CMB+DESI+DESY5	12.1	-2.71
CMB+DESI+PP	7.2	-0.1

Second Order Model

Dataset	$\Delta \chi^2_{ m min,CPL}$	$\Delta \ln \mathcal{Z}_{\rm CPL}$
CMB	-0.25	-0.26
CMB+SDSS	0.64	0.53
CMB+PP	0.57	1.02
CMB+SDSS+PP	0.26	0.78
CMB+DESI	1.09	-0.89
CMB+DESI+DESY5	0.21	0.96
CMB+DESI+PP	1.18	0.6

- All $\Delta \chi^2$ values are worse than CPL
- ► Datasets without DESI show positive $\Delta \ln \mathcal{Z}$ (better than CPL due to 1 less parameter)

- All $|\Delta \chi^2|$ and $|\Delta \ln \mathcal{Z}|$ values < 1
- Differences between models are minor in both likelihood and Bayesian terms

1 First-Order Model:

- Generally consistent with ΛCDM
- CMB+SDSS, CMB+DESI alleviate H_0 and S_8 tensions

2 Second-Order Model:

- Distinctive non-monotonic behavior in both energy density and $w_{\text{DE}}(a)$ evolution
- Late time $w_{DE}(a)$ shows strong agreement with the CPL parameterization across datasets (Phantom crossing behavior and Dark energy is weakening)
- **3** CMB+DESI+DESY5 always give much stronger preference for DDE compared to other datasets combination.

Constraining Pressure-Based Dynamical Dark Energy(DDE) Models with Latest Cosmological Data

2 Constraining exotic high-z reionization histories with Gaussian processes and the cosmic microwave background

Reionization: Imprint on the CMB

- ▶ Intergalactic gas transitioned from cold and neutral to hot and ionized
- ▶ Complex mechanisms: structure formation, thermodynamics, astrophysical sources

CMB Signatures

- **1** Temperature Anisotropies
- **2** Polarization
- 3kSZ (kinetic Sunyaev-Zel'dovich) effect

Key quantity: electron Thomson scattering optical depth

 $\tau(z) = \int_{t(z)}^{t_0} n_e \sigma_T c dt'$

New Physics Sources: Dark matter decay, primordial black holes, exotic energy injection

Constraints on Reionization Optical Depth

Planck 2018 results (arxiv:1807.06209)

Planck 2018 Results:

• $\tau = 0.0519^{+0.0030}_{-0.0079}$ (lowE; flat prior; TANH)

Key Points:

- Large-scale polarization tightens constraints
- Planck low-l EE-only SimAll likelihood provides strongest constraints on reionization history

Innovation:

- ▶ Implement a new, flexible Gaussian Process (GP)-based reionization scheme, called reio_gpr_tanh, in the CLASS code.
- Constrain high-redshift reionization histories using GP-based reionization scheme and CMB data.
- First propose use high-redshift optical depth, τ_{highz} posterior to constrain energy ejection in reionization history.

Advantages:

- Model-independent reconstruction of $X_e(z)$
- The τ_{highz} , offers tighter constraints on new physics sources compared to the low-redshift optical depth τ_{lowz} .
- Public Code: https://github.com/Cheng-Hanyu/CLASS_reio_gpr
- **Dataset:** Analysis with Planck 2018 low- ℓ EE likelihood

Gaussian Process Method

RBF Kernel:

$$k(z_1, z_2) = \sigma_f^2 \exp\left[-\frac{(z_1 - z_2)^2}{2l^2}\right]$$
(2.1)

GP Prediction:

$$X_e^{\rm GP}(z) = \bar{m}(z) + \mathbf{k}_*^T \mathbf{K}^{-1} [\mathbf{X}_{\rm train} - \bar{m}(\mathbf{z}_{\rm train})]$$
(2.2)

Key Parameters:

- $\triangleright \sigma_f$: Overall variance scale
- \blacktriangleright *l*: Correlation length in redshift space
- Training points: $\{(z_i, X_e^{\text{IN}}(z_i))\}$
- ▶ \mathbf{k}_* is the vector of covariances between the new point *z* and each training redshift z_i (i.e. $\mathbf{k}_{*,i} = k(z, z_i)$)
- ▶ \mathbf{K}^{-1} is the inverse matrix of the kernel function \mathbf{K} ($\mathbf{K}_{ij} = k(z_i, z_j)$)
- $\bar{m}(z) = 0$: mean function (Set = 0 in our case.)

Adaptive binning: Smaller intervals at low-z, larger at high-z

Tanh Transition Formula:

$$X_e(z) = X_e^{\rm GP}(z_i) + \frac{1}{2} \left[1 + \tanh\left(\frac{z - z_{\rm jump}}{\Delta z}\right) \right] \times \left[X_e^{\rm GP}(z_{i+1}) - X_e^{\rm GP}(z_i)\right]$$
(2.3)

Boundary Conditions:

- Low-z (post-reionization): $X_e \approx 1 + \frac{Y_{\text{He}}}{4(1-Y_{\text{He}})}$
- ▶ High-z (pre-reionization): $X_e \approx 10^{-5}$

Workflow

Hanyu Cheng (TDLI&TUOS)

Some Examples for $X_e(z)$

Demonstrate the flexibility of our method to explore the X_e -z parameter space.

Reconstruction history of $X_{\rm e}(z)$

Optical Depth Constraints

Parameter Definitions

- \triangleright z_c : Critical redshift separating low and high redshift regimes
- ▶ τ_{lowz} : Optical depth integration for $z \in [0, z_c]$
- ▶ τ_{highz} : Optical depth integration for $z \in [z_c, z_{\text{max}}]$ $(z_{\text{max}} = 800 \text{ set by hand})$

$z_{ m c}$	68% CL		$95\%~{ m CL}$	
	$ au_{ m lowz}$	$ au_{ ext{highz}}$	$ au_{ m lowz}$	$ au_{ ext{highz}}$
20.0	$0.0474^{+0.0079}_{-0.0080}$	< 0.036	$0.047^{+0.018}_{-0.017}$	< 0.109
25.0	$0.0480\substack{+0.0080\\-0.0080}$	< 0.035	$0.048^{+0.018}_{-0.017}$	< 0.108
30.0	$0.0483\substack{+0.0083\\-0.0080}$	< 0.035	$0.048^{+0.018}_{-0.017}$	< 0.108
35.0	$0.0486^{+0.0086}_{-0.0081}$	< 0.035	$0.049^{+0.018}_{-0.017}$	< 0.107
40.0	$0.0488^{+0.0088}_{-0.0082}$	< 0.035	$0.049\substack{+0.019\\-0.017}$	< 0.107

$\sim P/P_{ m max} \,\, {f for} \,\, au_{ m lowz} \,\, {f and} \,\, au_{ m highz} \,\, .$

Example for "irreducible" axion decay

95% CL upper limits:

- ► $\chi^2 < 403.2$
- $\tau_{highz} < 0.111$

Key Finding:

- τ_{highz} statistics provide constraints comparable to those from Langhoff et al. (arXiv:2209.06216), who derived constraints from freeze-in abundance.
- ▶ τ_{highz} statistics and χ^2 analyses agree well,
- τ_{highz} providing conservative constraints compared to χ^2 analyses using Planck low- ℓ EE-only likelihood. (reliable)

CMB Optical Depth, τ_{highz}

Conclusions

- ▶ Model-independent approach: Used GP method to sample random reionization histories $X_e(z)$
 - MCMC analysis with $\mathcal{O}(20)$ GP parameters
 - Planck low-
 ℓ EE-only SimAll likelihood
- ▶ New derived parameter: τ_{highz} high-z contribution to CMB optical depth
 - Extended existing Planck analyses to high-z
 - Verified via χ^2 analysis to be reliable
 - Model-independent posterior for testing any energy injection model

Applications:

- Decaying "irreducible" axion DM constraints
- String axion constraints (See Ziwen Yin's poster)
- Importance: Offer a clean and general way to constrain new physics using τ_{highz} posterior.
- Public Code: https://github.com/Cheng-Hanyu/CLASS_reio_gpr https://github.com/ZiwenYin/Reionization-with-multi-axions-decay

Thanks

Thanks

Questions?

Hanyu Cheng (TDLI&TUOS)

CosmoVerse@Istanbul 2025

DE Decomposition

First Order ($\Omega_2 = 0$): Dark energy = cosmological constant + fluid with w = -4/3 (phantom)

$$\rho = \rho_{\mathrm{DE},0} \left[\left(1 - \frac{\Omega_1}{\Omega_{\mathrm{DE},0}} \right) + \frac{\Omega_1}{\Omega_{\mathrm{DE},0}} a \right]$$
(4.1)

Second Order: Dark energy = cosmological constant + two fluids (w = -4/3 and w = -5/3)

$$\rho = \rho_{\mathrm{DE},0} \left[\left(1 - \frac{\Omega_1}{\Omega_{\mathrm{DE},0}} - \frac{3}{5} \frac{\Omega_2}{\Omega_{\mathrm{DE},0}} \right) + \left(\frac{\Omega_1}{\Omega_{\mathrm{DE},0}} + \frac{\Omega_2}{\Omega_{\mathrm{DE},0}} \right) a - \frac{2}{5} \frac{\Omega_2}{\Omega_{\mathrm{DE},0}} a^2 \right]$$
(4.2)

	Pressure Parameterization	CPL Parameterization
a = 0	w = -1	$w = w_0 + w_a$
$a = \infty$	w = -4/3 (1st order), $w = -5/3$ (2nd order)	$w = \infty$
Parameters	1 parameter Ω_1 (1st order)	2 parameters w_0 and w_a
	2 parameters Ω_1 and Ω_2 (2nd order)	(1st order)

Not nested with CPL

χ^2 -Paramter number

- ▶ Universe's expansion is **accelerating**
- ► First evidence: Type Ia Supernovae (1998)
- 2011 Nobel Prize: Saul Perlmutter, Brian Schmidt, Adam Riess
- ▶ Dark Energy (DE) $\approx 70\%$ of universe
- \blacktriangleright Standard model: ACDM
 - $\Lambda = \text{cosmological constant}$
 - $\blacktriangleright \text{ CDM} = \text{Cold Dark Matter}$
- ▶ Recent challenges from DESI & DES

Cosmic Microwave Background (CMB)

- Snapshot at $z \sim 1100$
- Temperature anisotropies $\Delta T/T \sim 10^{-5}$
- ► Acoustic peaks encode cosmology
- Datasets Used:
 - ▶ Planck 2018:
 - ▶ high- ℓ Plik TT, TE, EE likelihoods
 - ▶ low- ℓ TT-only Commander likelihood
 - ▶ low- ℓ EE-only SimAll
 - ACT DR6: Lensing (actplanck baseline)
 - Combined as "CMB"

Figure 3: This graph shows the temperature fluctuations in the CMB detected by Planck at different angular scales on the sky from ESA and the Planck Collaboration.

Baryon Acoustic Oscillations (BAO)

Standard Ruler:

- ▶ Sound waves in early universe
- ▶ Frozen at recombination
- $\blacktriangleright\,$ Characteristic scale $\sim 150~{\rm Mpc}$
- Geometric Probe: Measures $D_A(z)$ and H(z) directly through angular and radial BAO scales

Datasets:

- ► **SDSS**: the completed SDSS-IV eBOSS survey
- ▶ **DESI DR2**: 3-year data
- Redshift range: 0.1 < z < 4

Figure 4: Two point correlation function of the average of 25 Abacus galaxy mock catalogs (data points) compared to the model prediction (lines) pre- (grey) and post-reconstruction (yellow) from DESI Collaboration.

150

Type Ia Supernovae

Standard Candles:

- ▶ Uniform peak luminosity
- ▶ Distance ladder calibration
- ▶ Direct evidence for acceleration
- Late-time Probe: Directly measures luminosity distance $D_L(z)$ and expansion history

Datasets:

- ▶ PantheonPlus: 1550 SNe
 - ▶ 0.001 < z < 2.26
- ▶ **DES Y5**: 1635 SNe
 - ▶ 0.1 < z < 1.13

Figure 5: distance modulus vs redshift from The Pantheon+ Analysis paper (https://arxiv.org/abs/2202.04077)