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Distance probes

Type la Supernovae Baryonic Acoustic Oscillations
Uniform luminosity at peak - used as Sound horizon ‘imprinted’ in our Universe at
“standardizable candles” recombination - used as a “standard ruler”
Luminosity distance vs redshift, D (2). Angular distance vs redshift, D (z).
Depends on cosmology H(z) Depends on cosmology H(z)
D@ = (1 +2)c 5 |f 5o Du(2) = 5[] 2=
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e Combination of BAO and SN from the final DES dataset with CMB
from Planck.

DES-BAO + DES-SN + Planck-CMB
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» These cosmology results from DES Y6 BAO and represent a
culmination of what the completed Dark Energy Survey can tell us about the
expansion of the Universe via geometric probes (arXiv:2503.06712).

* In ACDM and the one-parameter extensions we considered, BAO tends to

pull combined constraints towards lower Qm, SN towards higher Qm, with
some ~2-30 tensions between data combinations.

* All data sets are compatible in w w CDM.

« We found a ~3c preference for w w CDM.

20



Thanks for your attention!




Back up slides




I
Data sets: CMB

2. Angular scale of the acoustic peak (6x)

1. Temperature and polarization anisotropy (CMB) In order to isolate geometric/background information from

the CMB, in some cases we instead consider a constraint on
We incorporate measurements of the CMB temperature

and polarization anisotropies using the Planck 2018 likeli- Ox =715(24)/[Dm(z4) )

hood [51], which we will subsequently refer to using the label

“CMB”. Specifically, for temperature and polarization spectra

for £ > 30, we employ the P1ik-1ite likelihood, which in-

the ratio between the baryon-photon sound horizon and the
comoving distance at the redshift of recombination, z,. We
incorporate this via a Gaussian likelihood taken from the

corporates the effects of marginalizing over Planck foreground same Planck 2018 temperature and polarization data described
and nuisance parameters and includes measurements of spec- above, [53], having

tra up to {max = 2508 for TT, and £, = 1996 for TE and

EE. Following the standard Planck analysis, at low multipoles 1006, = 1.04109 + 0.00030 . (&)

(2 < ¢ < 30 ) we use the Commander likelihood for the TT
spectrum and the SimAll likelihood for the EE polarization
spectrum. We do not include CMB lensing constraints.

For ease of comparison, we note that the 8, likelihood used in
DESI analyses [20] has a nearly identical mean based on Planck
2018 constraints which include lensing, but DESI additionally
increased this width by 75% to account for possible modeling
uncertainties.

23



P Fors Parameter Prior
ACDM
Hy [km s~ 'Mpc™!] [55,91]
Qn [0.1, 0.9]
Qy [0.03, 0.07]
kACDM
Q. [-0.25, 0.25]
wCDM
w [-3,-0.33]
wowqa CDM
w( [-3,-0.33]
Wa [-3, 3]
vACDM
Y myleV] [0, 1]
Chains that include CMB
T [0.04, 0.15]
As x 10° [0.5, 5.0]
ng [0.87, 1.07]
aplanck (1.0, 0.0025) -




|
Quoting tensions with ACDM

To quantify preferences for an extended model relative to
ACDM we compare constraints on cosmological parameters.
To do so, we compute the probability of a shift in the alterna-
tive model’s added cosmological parameters relative to their

corresponding ACDM values. This probability is defined as: 5
p gAC p y We always report results as the effective number of standard

deviations. Given an event of probability A, itis given by [74]:
A(D.M)E/ P(p|D,M)dp, (19)
P(p|D.M)>P(p* | D.M)

ne = V2Erf~'(4). 21)
whcrc p represents the additional parameters of the model M This corresponds to the number of standard deviations that an
withrespect to ACDM (e.g., W0 and wq inwow,CDM), and p event with the same probability would have had if it had been
denotes the ACDM values of these parameters (e.g. wo = —1, drawn from a Gaussian distribution.

wo = 0). This integral quantifies the posterior mass exceeding
the iso-density contour defined by the ACDM posterior value,
P(p* | D, M). Note that if the extra parameters have flat priors,
as it is in the cases considered here, this result is parameter
invariant.
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Comparison with other approaches

- Our approach:
- for weakly constrained posteriors, its reported significance may be impacted by how prior
bounds (including in other parameter directions) shape the marginalized posteriors of the

beyond-ACDM parameters.

- Evidence ratios:
- more directly sensitive to the choice of parameters’ prior ranges.

- Frequentist A y* improvements:

- less sensitive to the prior and projection effects.

- subject to the uncertainty due to noise in the y? minimization procedure.

- translating A y? estimates to model comparison significances relies on assumptions of
Gaussianity — both of the likelihood in data space and of the posterior in parameter space —
which may not hold for all data combinations we consider.

- equivalent to our approach in the limit of Gaussian posteriors.
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Deviations from ACDM

Deviations from ACDM (o)

Dataset kACDM wCDM wowa CDM
BAO + SN + BBN 1.4 1.4 1.8
BAO + SN + BBN + 1y - - 202.7
BAO + SN + 0, 2.5 2.7 2.3
BAO + SN + 64 + BBN 2.8 3.1 2.8
BAO + SN + 6, + BBN + 1y - - 2.9(2.8)
SN 1.3 1.6 2.0
CMB 3.0 1.7 2.5
SN + CMB 29 2.0 2.2
BAO + CMB 0.6 2.8 3.4
BAO + SN + CMB 1.2 1.8 32

TABLE II. Statistical significance, in os, of deviations from ACDM based on shifts in the additional parameter(s) in the extended model:
Q. in kACDM, w in wCDM and {wq.w,} in wogw,CDM. See the methodology described in Section IIIC 1. For the case of ty priors, we
consider the fiducial Gaussian prior case and, in parenthesis, the case where only a lower bound on 7y is set. We highlight in bold the case for
BAO+SN+CMB, our most constraining combination, which in the wow,CDM model shows a 3.2¢" deviation from ACDM.
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Deviations from ACDM (from A y?)

Ay 2 improvement compared to ACDM

Dataset kACDM wCDM wowa CDM
BAO + SN + BBN 1.0 (0.5) 1.6 (0.8) 5.7 (1.6)
BAO + SN + 6, 29 (1.3) 3.8 (1.6) 5.0 (1.4)
BAO + SN + 6, + BBN 9.3 (2.3) 104 (3.0) 10.9 (2.6)
SN 1.0 (0.5) 1.6 (0.8) 5.9 (1.6)
CMB 5.0 (2.0) 0.4 (0.0) 0.9 (0.0)
SN + CMB 8.3 (2.7) 3.8 (1.6) 7.4 (2.0)
BAO + CMB 0.8 (0.3) 7.3 (2.5) 7.8 (2.1)
BAO + SN + CMB 1.1 (0.5) 3.5 (1.5) 11.6 (2.7)

TABLE III. Improvement in goodness-of-fit from freeing additional model parameters computed via the difference between the minimum y>
estimated for ACDM and that for each extended model. Positive values indicate an improved fit in the extended model. Numbers in parentheses
indicate the statistical significance in os assuming a Gaussian approximation for the posterior, which may not be accurate for less constraining
data combinations.

[N et 2dt

CDF,> (Ax2,p| 2 dof N

. 1
)= 7=
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Quoting tensions between datasets

We start by building the posterior distribution of pa-
rameter differences. We consider each dataset, and in
particular the two data sets denoted 1 and 2, to be inde-
pendent. Under the assumption that the two-parameter
sets that describe the datasets, p;.p2, differ, the joint
distribution of their parameter determinations is given
by the product of their posteriors:

The distribution of parameter differences, P(Ap), pro-
vides insight into whether the parameter determinations
from two datasets are consistent. Intuitively, if P(Ap)
has most of its support when Ap has large deviations

P(p1,p2|di, ds) = Pi(p1|di)Ps(p2|ds). (1) fr.om.zoro. tho.two parameter sets are in’(f‘()nlpati}?lo. in-
dicating a tension between the datasets. To quantify the
To compute the distribution of parameter differences, we probability of a parameter shift, we calculate it as
change variables by defining Ap = p; — p2, including
all parameters shared by the two datasets. The distribu- A= / P(Ap)dAp, (1)
tion of Ap is obtained by marginalizing over one of the JP(Ap)>P(0)
parameters:

P(Ap) = / Py(p)Pa(p — Ap)dp. )

29



Tensions between datasets

Tension (o)

Datasets ACDM kACDM wCDM wowa CDM vACDM
BAO vs SN 0.5 0.0 0.0 0.3 0.2
CMB vs SN 1.7 1.5 1.3 1.1 1.2
CMB vs BAO 2.0 3.2 0.6 0.1 2.0
SN vs BAO + 6, 2.4 - - -

CMB vs BAO + SN + BBN 2.2 3.3 2.2 1.2

SN vs BAO + BBN 0.4 - - - -

SN vs BAO + BBN + 64 29 0.5 0.0 0.9 2.6
BAO + CMB vs SN 2.1 1.5 2.5 1.6 2.1
CMB vs BAO + SN + BBN + 1y 1.5(0.8) - - 0.9 (0.9) -

TABLE IV. Tensions, in o°s, among independent (combinations of) probes for a given model. See the methodology described in Section ITII C 2.
For the case of ty priors, we consider the fiducial Gaussian prior case and, in parenthesis, the case where only a lower bound on ry; is set.
We note that these tensions are reported in the whole parameter space unlike deviations in Table II, which refer to the parameter additional to
ACDM.
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ACDM vs. WOWaCDI\/l
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ACDM vs. WOWaCDI\/l
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Hubble constant
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-
DES vs. DESI BAO
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