

A Low-Redshift Preference for an Interacting Dark Energy Model

Yuejia Zhai

Based on work with Marco de Cesare, Carsten van de Bruck, Eleonora Di Valentino, and Edward Wilson-Ewing. arXiv: 2503.15659

> CosmoVerse@Istanbul 25 June 2025

Hubble Tension

Probability distribution from MCMC sampling

SH0ES collaboration, directly measuring the distance ladder: $H_0 = 73.04 \pm 1.04$ km/s/Mpc

ACDM - 6 parameter cosmology

Credit: ESA/Planck Collaboration

Interactions between dark matter and dark energy

• Potential solution to tensions via DM-DE energy transfer

Interacting Dark Energy model can offer a solution

• Energy conservation equations:

$$\nabla_{\mu}T^{\mu}_{DM\nu} = +\frac{Q(v_{DM})_{\nu}}{a}$$
$$\nabla_{\mu}T^{\mu}_{DE\nu} = -\frac{Q(v_{DM})_{\nu}}{a}$$

with energy density transfer rate: ($\xi < 0$)

$$Q = \xi \mathcal{H} \rho_{DE}$$

Interacting Dark Energy model can offer a solution

Can we achieve similar observational performance with more minimal phenomenological modification to the theory?

Interacting Dark Energy model (IDE)

The Einstein Equations are:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu} + Q g_{\mu\nu}$$

• We have an effective cosmological constant Q.

$$Q = 8\pi G \epsilon \rho_{DM} + const.$$

Key parameter: ϵ is a dimensionless constant, denoting the strength of the interaction between DM and DE.

• Energy flows from **DM** \rightarrow **DE** when $\epsilon > 0$

Stability & Theoretical Insights

- $\epsilon > 0$ avoids gradient instability
- Minimal modifications to Einstein equations that retains gauge invariance
- Dark energy EOS $w_{DE} = -1$

• Energy conservation can be rewritten as:

$$\nabla_{\mu}T^{\mu}_{DM\nu} = -\frac{1}{8\pi G}\nabla_{\nu}Q$$

Methodology

- Datasets:
 - Planck 2018 CMB temperature and polarization power spectrum with CMB lensing
 - o DESI 2024 BAO
 - Pantheon+ (1550 SNIa)
- Tools:
 - $_{\circ}$ $\,$ Modified CLASS for IDE dynamics $\,$
 - Bayesian analysis with COBAYA

• Flat priors:

Parameter	Prior	
$\Omega_{ m b}h^2$	[0.005, 0.1]	
$\Omega_{ m c} h^2$	[0.001, 0.990]	
$ au_{ m reio}$	[0.01, 0.80]	
$n_{ m s}$	$\left[0.8, 1.2 ight]$	
$\log(10^{10}A_{ m s})$	$\left[1.61, 3.91\right]$	
$100 heta_{ m s}$	[0.5,10]	
ϵ	[0, 0.1]	

Results – Constraints on ϵ

- Planck Alone:
 - ϵ < 0.0009 (95% CL) no interaction preferred
- Planck + DESI:
 - $\epsilon = 0.00049^{+0.00022}_{-0.00033}$ mild **1** σ preference
- Planck + SNIa:
 - Tighter upper limit (ϵ < 0.0006)

Results – Constrain

- Planck Alone:
- Planck + DESI:
 - $\epsilon = 0.00049^{+0.00022}_{-0.00033}$ mild **1** σ p
- Planck + SNIa:
 - Tighter upper limit (ϵ < 0.0006)

Allowing negative ϵ shows no significant difference

CMB constraints

Theoretical CMB TT prediction

CMB constraints

DESI 2024 BAO constraints

- CMB data show no evidence for DM-DE interaction
- The preference for such interaction comes from DESI BAO measurements

Sound horizon at drag epoch

Conclusions

- Weak Interaction:
 - DESI 2024 BAO data introduces a mild 1σ signal ($\epsilon \sim 10^{-4}$), driven by DESI's lowz distance measurements;
 - \circ CMB and SNIa data remain consistent with Λ CDM , with tight constraints on ϵ .
- Mild shift towards higher H₀ and S₈, but tensions are not alleviated;
- IDE can accommodate $w_{DE} = -1$ without introducing instabilities.

Conclusions

- Weak Interaction:
 - DESI 2024 BAO data introduces a mild 1σ signal ($\epsilon \sim 10^{-4}$), driven by DESI's lowz distance measurements;
 - CMB and SNIa data remain consistent with Λ CDM , with tight constraints on ϵ .
- Mild shift towards higher H₀ and S₈, but tensions are not alleviated;
- IDE can accommodate $w_{DE} = -1$ without introducing instabilities.

Thank you!

Perturbations

$$\begin{split} \delta_c' &= - \; \frac{1}{1-\epsilon} \left(\theta_c + \frac{h'}{2} \right) \;, \\ \theta_c' &= - \; \frac{1-4\epsilon}{1-\epsilon} \mathcal{H} \theta_c + \epsilon k^2 \delta_c \;. \end{split}$$

Results – Constraints on ϵ

Parameter	Planck2018	Planck2018+DESI	Planck2018+SNIa	Planck2018+DESI+SNIa
$\Omega_{ m b}h^2$	0.02232 ± 0.00015	0.02237 ± 0.00015	0.02230 ± 0.00015	0.02234 ± 0.00015
$\Omega_{ m c} h^2$	$0.1186\substack{+0.0017\\-0.0014}$	0.11744 ± 0.00095	$0.1195\substack{+0.0013\\-0.0012}$	0.11800 ± 0.00088
$ au_{ m reio}$	0.0542 ± 0.0076	$0.0567\substack{+0.0069\\-0.0077}$	0.0529 ± 0.0071	0.0560 ± 0.0071
$n_{ m s}$	0.9660 ± 0.0044	0.9684 ± 0.0036	0.9646 ± 0.0040	0.9674 ± 0.0036
$\log(10^{10}A_{ m s})$	3.043 ± 0.015	$3.047\substack{+0.014\\-0.016}$	3.042 ± 0.014	3.046 ± 0.014
H_0	$68.16\substack{+0.67\\-0.93}$	68.78 ± 0.52	$67.72\substack{+0.56\\-0.69}$	68.47 ± 0.47
$\Omega_{ m m}$	$0.305\substack{+0.012\\-0.009}$	0.2970 ± 0.0063	$0.3107\substack{+0.0088\\-0.0076}$	0.3008 ± 0.0058
σ_8	0.8082 ± 0.0060	$0.8071\substack{+0.0058\\-0.0064}$	0.8095 ± 0.0058	0.8079 ± 0.0058
S_8	$0.815\substack{+0.018\\-0.016}$	0.803 ± 0.011	0.824 ± 0.014	0.809 ± 0.011
ε	< 0.000432 (< 0.000907)	$0.00049^{+0.00022}_{-0.00033} (< 0.000970)$	< 0.000293 (< 0.000635)	$0.00041^{+0.00015}_{-0.00035} (< 0.000880)$

TABLE II. Constraints at 68% (95%) CL on parameters from various combinations of datasets.