PRIMORDIAL BLACK HOLES, CHARGE AND DARK MATTER:

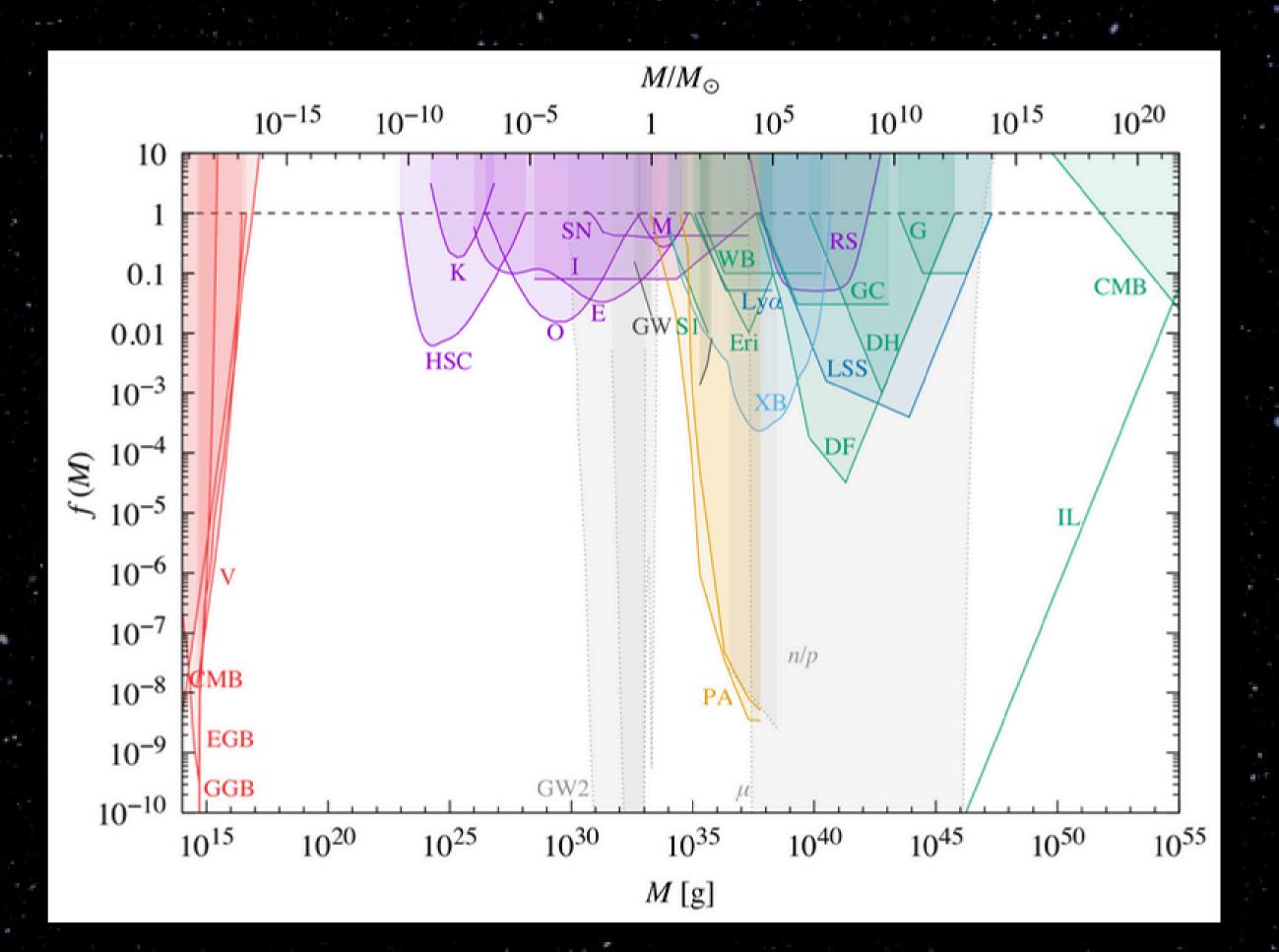
RETHINKING EVAPORATION LIMITS

IN COLLABORATION WITH JUSTIN FENG, SEBASTIAN SCHUSTER, AND MATT VISSER

JESSICA SANTIAGO

NATIONAL UNIVERSITY OF TAIWAN LEUNG CENTER FOR COSMOLOGY AND ASTROPARTICLE PHYSICS ARXIV: 2503.20696

(\mathbf{P}) () (\mathbf{D}) S (\mathbf{p}) \bigcirc



Carr, B., Kohri, K., Sendouda, Y. & Yokoyama, J. (2021)

Reissner Nordstrom metric

$$ds^{2} = -\left(1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}}\right) dt^{2} + \left(1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}}\right)^{-1} dr^{2} + r^{2} d\Omega^{2}$$

$$\cdot \text{ It is static and spherically symmetric;}$$

$$\cdot \text{ Solves the coupled Einstein-Maxwell equations}$$

$$\cdot \text{ Has two event-horizons located at:}$$

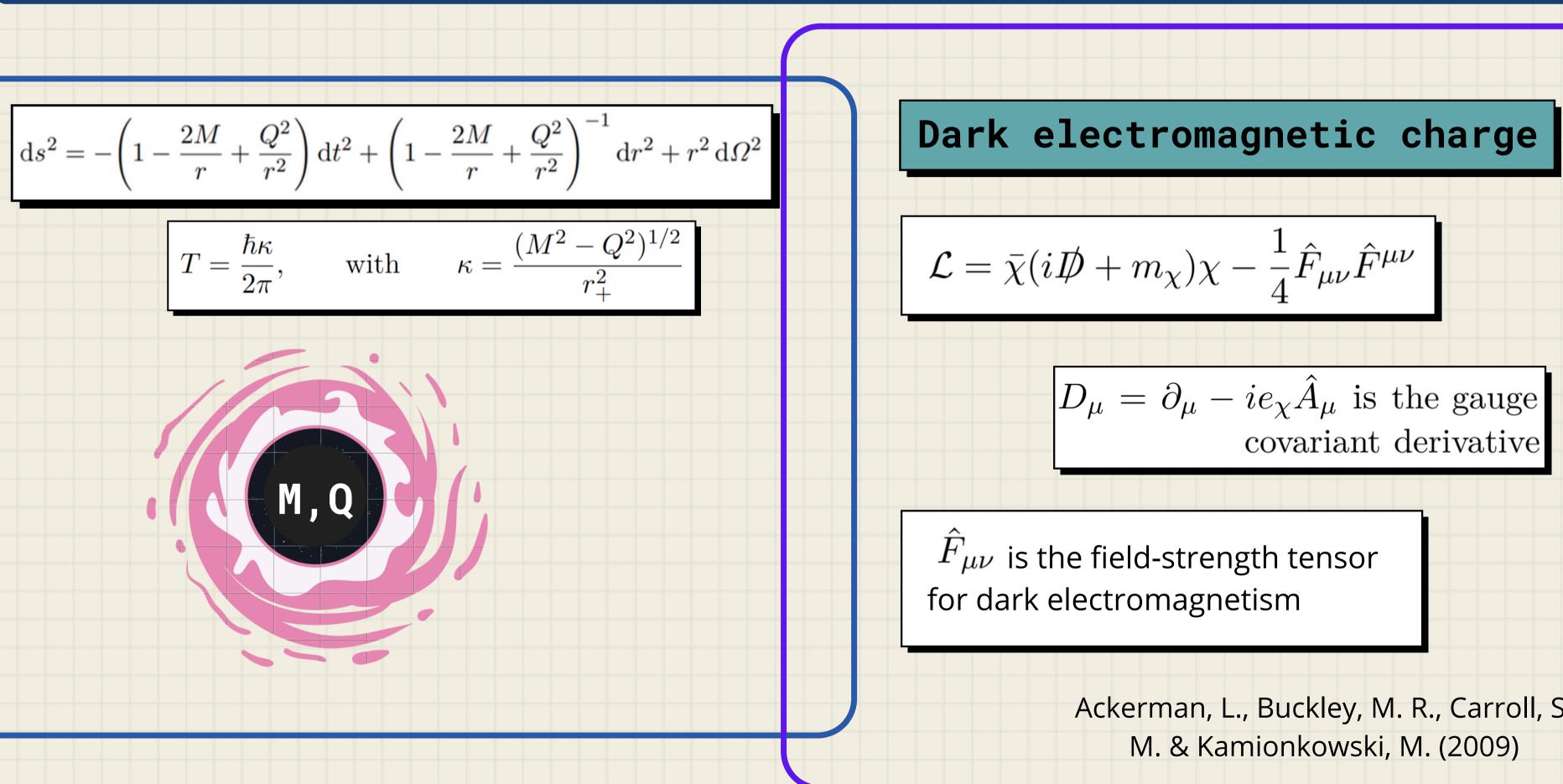
$$r_{\pm} = M \pm \sqrt{M^{2} - Q^{2}}$$
The temperature of an evaporating RN black hole is given by:
$$T = \frac{\hbar\kappa}{2\pi}, \quad \text{with} \quad \kappa = \frac{(M^{2} - Q^{2})^{1/2}}{r_{+}^{2}}$$

 $\frac{Q}{M} \ll \frac{m}{e} \simeq 10^{-21}$ (in geometric units)



For standard EM:

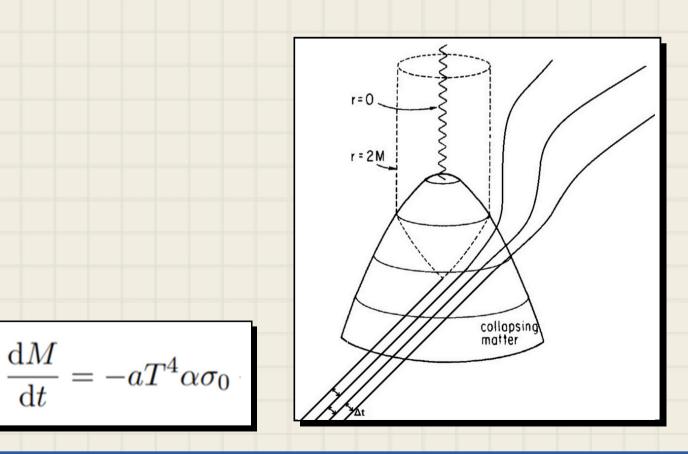
Reissner Nordstrom PBH with dark electric charge

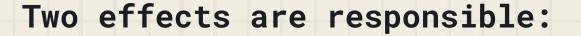


Ackerman, L., Buckley, M. R., Carroll, S.

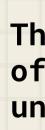
RN BH Evaporation:

Quantum field theory in curved spacetime effect. Is is generated by the presence of an event horizon, which changes the notion of an initial vaccumm state into a thermal bath.





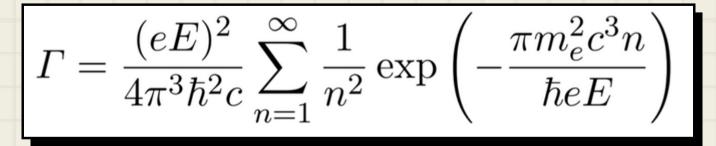
M,Q



Schwinger effect

The presence of a sufficiently strong electric field estimulates the quantum creation of E e+ e+ e+ pairs of particles.

The Schwinger expression for the rate of electron-positron pair creation per unit four-volume is given by:



HW assumptions -- Dark EM extension

Positive charge

Applicability of Schwinger's result:

$$\Gamma = \frac{(eE)^2}{4\pi^3\hbar^2c} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-\frac{\pi m_e^2 c^3 n}{\hbar eE}\right)$$

Black hole mass must be much larger than the reduced Compton wavelength of the electron (or lightest charged particle)

$$M \gg \frac{\hbar}{m_e} \simeq 10^{-15} M_{\odot}$$

Series truncation:

$$\frac{e^3Q}{m_e^2r^2} \ll 1$$

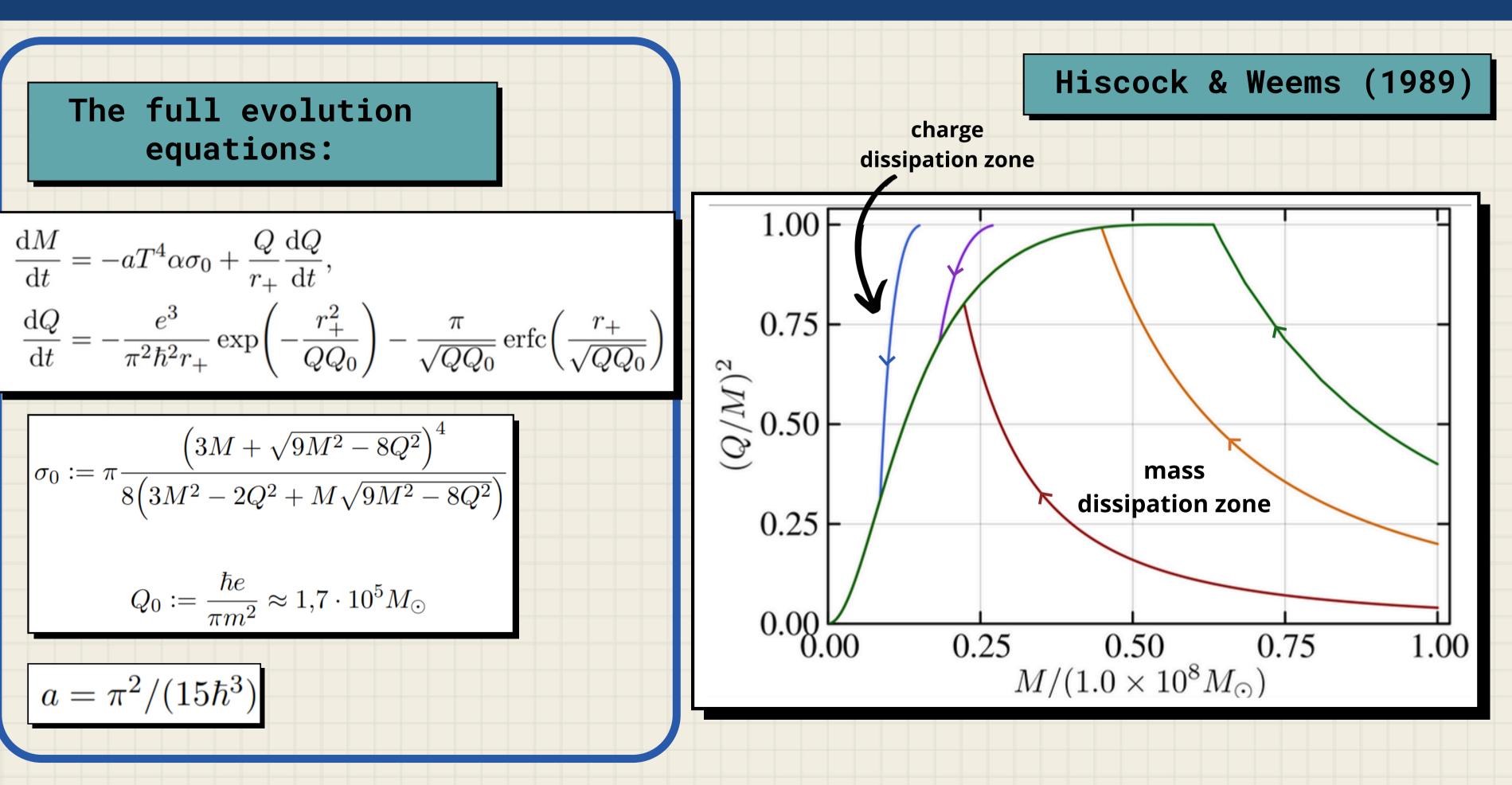
Error function series truncation:

$$r_+^2 \gg Q Q_0$$

(i)
$$M \gg \frac{n}{m_e}$$
,

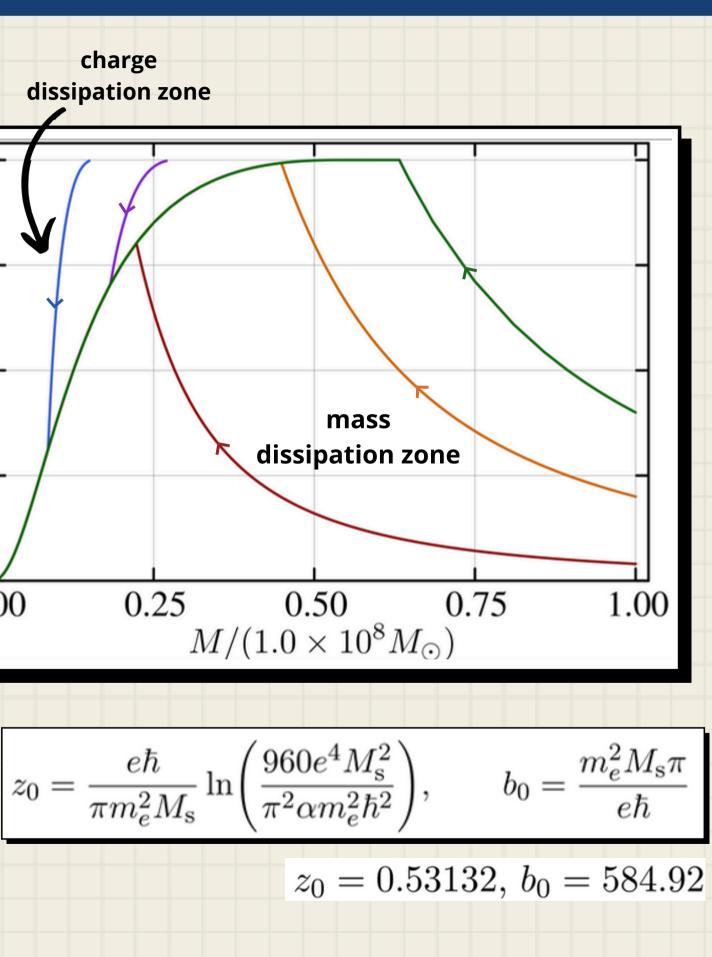
Summarized model limitations:
(i)
$$M \gg \frac{\hbar}{m_e}$$
, (ii) $\frac{e^3Q}{m_e^2 r^2} \ll 1$, and (iii) $r_+^2 \gg QQ_0$
Dark EM extension:
 $M_{DE} \gg \frac{\hbar}{m_{\chi}} = \frac{10^{-15}}{\sigma_m} M_{\odot}$
 $M_{DE} \gg \frac{e_{\chi}^3}{m_{\chi}^2} = 4 \cdot 10^3 \frac{\sigma_e^3}{\sigma_m^2} M_{\odot}$
 $\frac{\sigma_e^2 \sigma_M}{\sigma_m} \gg 10^{-66}$

RN BH Evaporation:

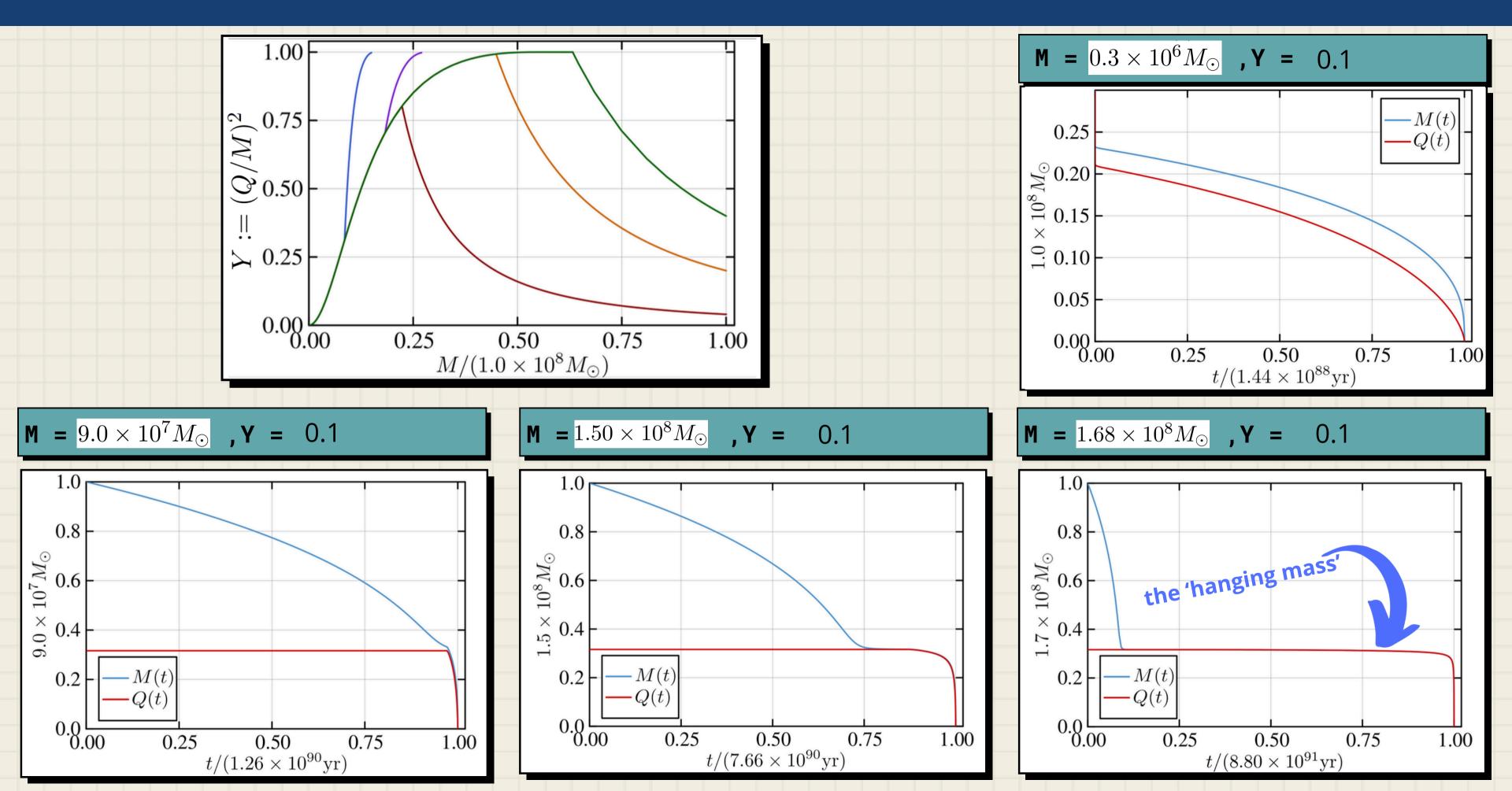


RN BH Evaporation:

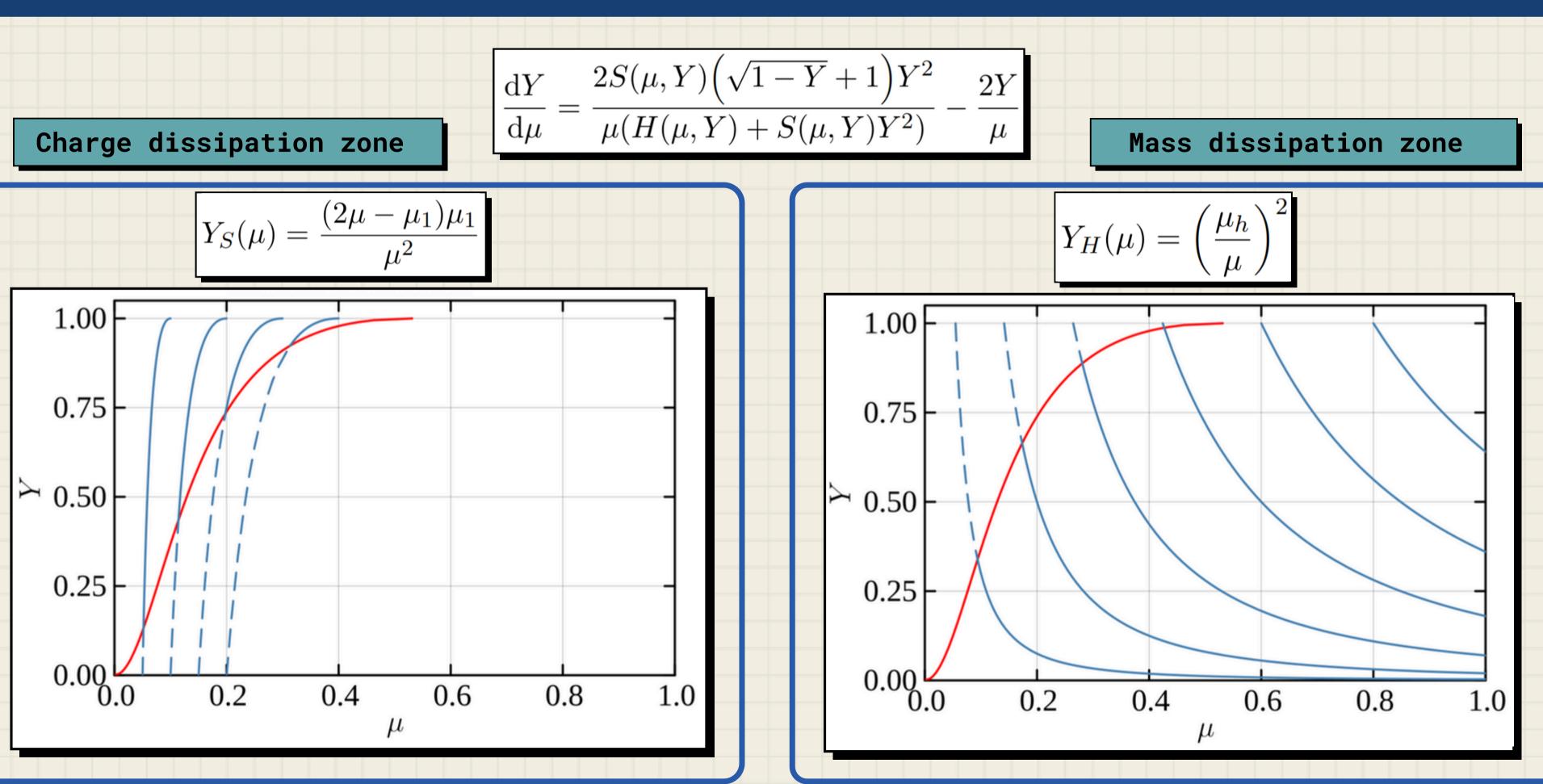
$$\begin{aligned} \frac{dM}{dt} &= -aT^{4}\alpha\sigma_{0} + \frac{Q}{r_{+}}\frac{dQ}{dt}, \\ \frac{dQ}{dt} &= -\frac{e^{3}}{\pi^{2}\hbar^{2}r_{+}}\exp\left(-\frac{r_{+}^{2}}{QQ_{0}}\right) - \frac{\pi}{\sqrt{QQ_{0}}}\operatorname{erfc}\left(\frac{r_{+}}{\sqrt{QQ_{0}}}\right) \\ \hline \\ \textbf{Change of variables} \\ \hline Y &:= (Q/M)^{2} \\ \hline \\ \frac{d\mu}{d\tau} &= -\frac{(H(\mu, Y) + S(\mu, Y)Y^{2})}{(\sqrt{1 - Y} + 1)^{4}}, \\ \frac{dY}{d\tau} &= \frac{2(H(\mu, Y) - S(\mu, Y)(1 - Y + \sqrt{1 - Y})Y)Y}{\mu(\sqrt{1 - Y} + 1)^{4}} \\ \hline \\ H(\mu, Y) &:= \frac{\left(\sqrt{9 - 8Y} + 3\right)^{4}(1 - Y)^{2}}{\mu^{2}(\sqrt{1 - Y} + 1)^{4}(3 - 2Y + \sqrt{9 - 8Y})}, \\ \textbf{the Hawking term} \\ S(\mu, Y) &:= \exp\left\{b_{0}\left[z_{0} - \mu\left(\sqrt{1 - Y} + 1\right)^{2}/\sqrt{Y}\right]\right\}. \end{aligned}$$

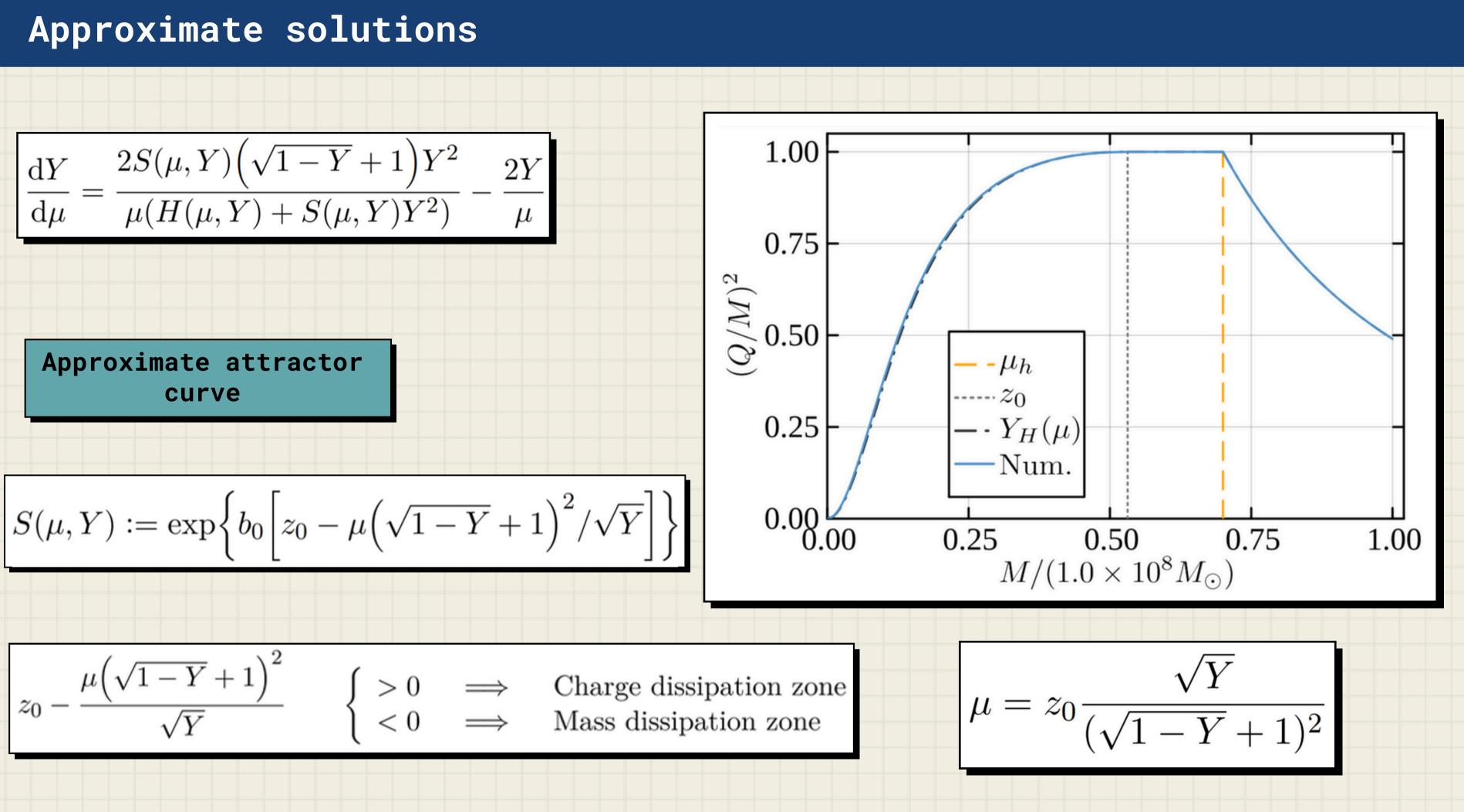


RN BH Evolution Profiles:

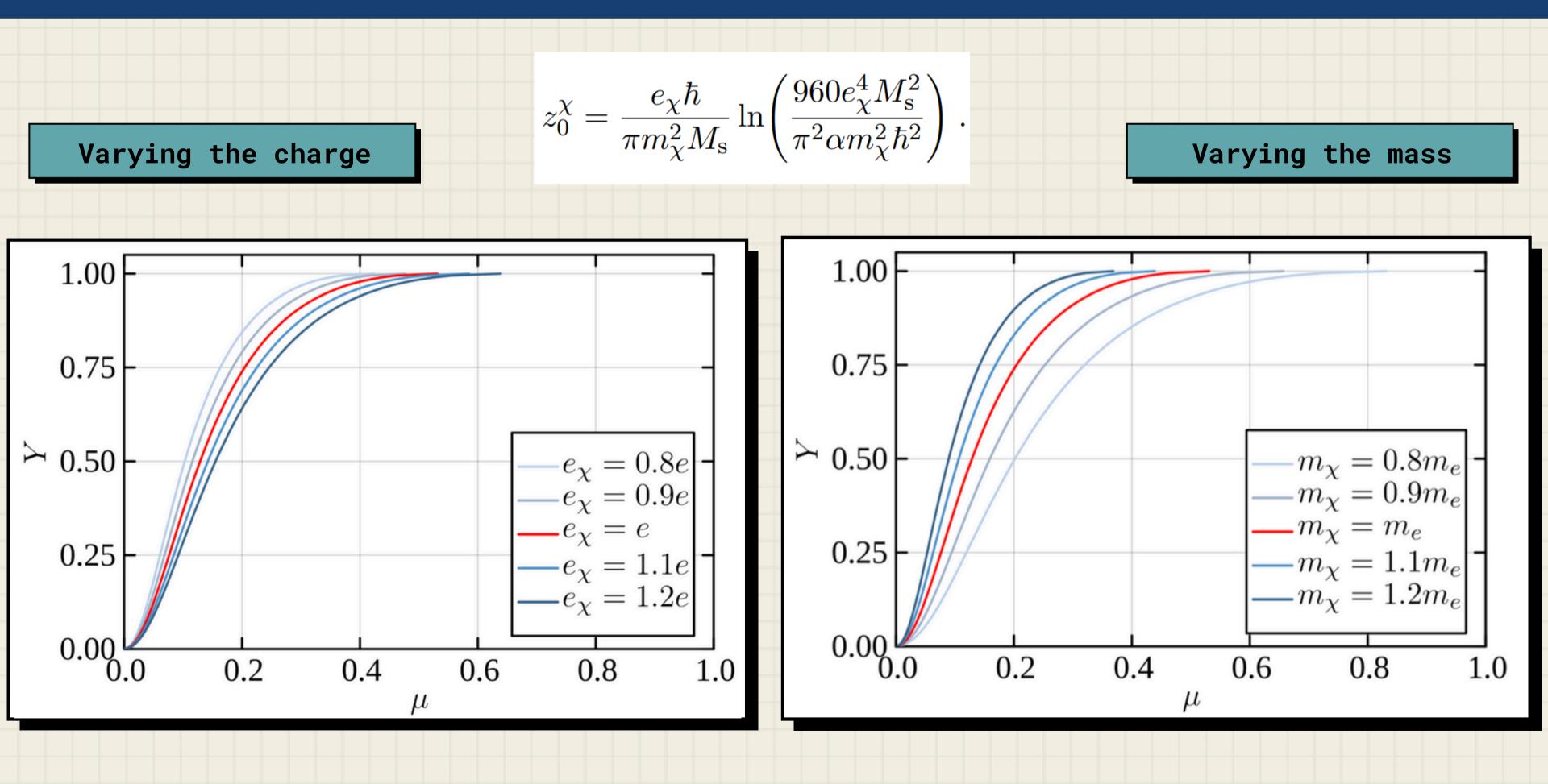


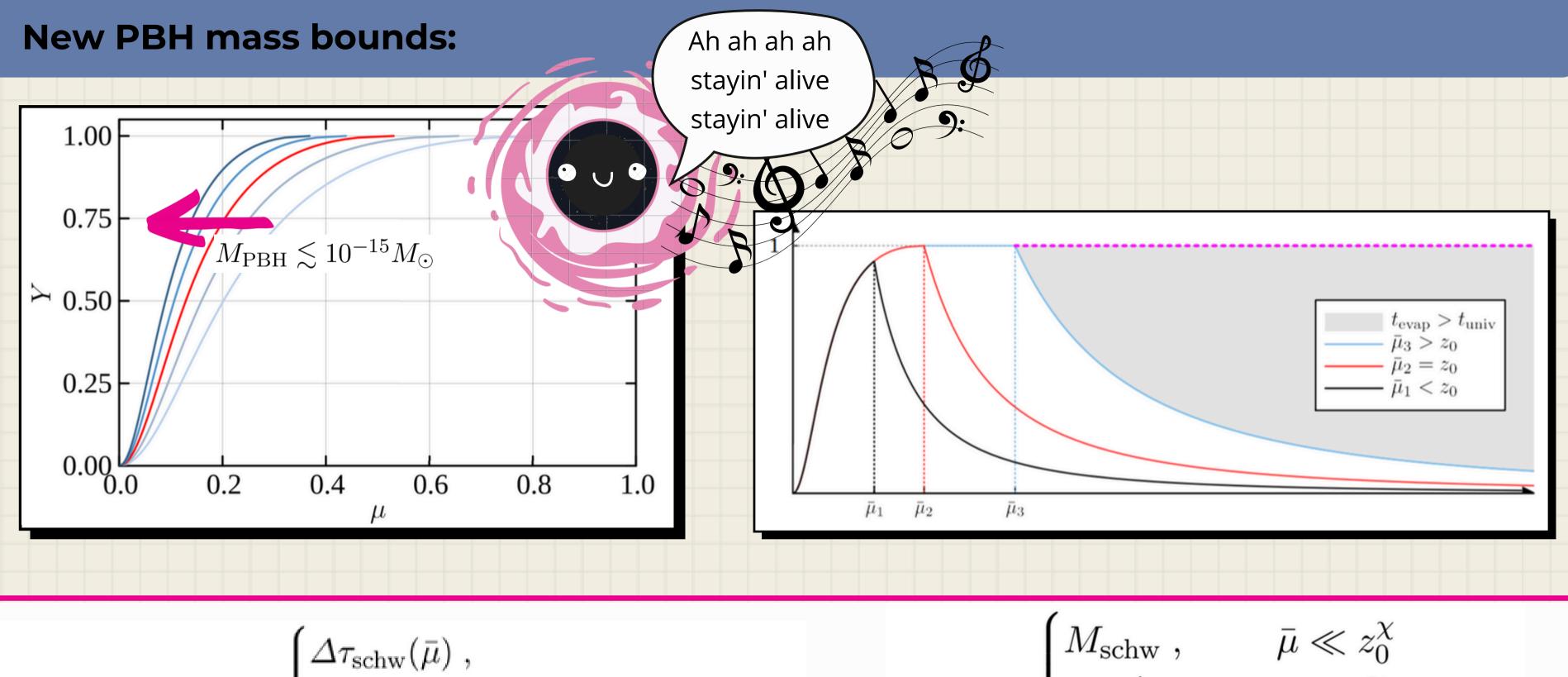
Approximate solutions





Connection to Dark Matter



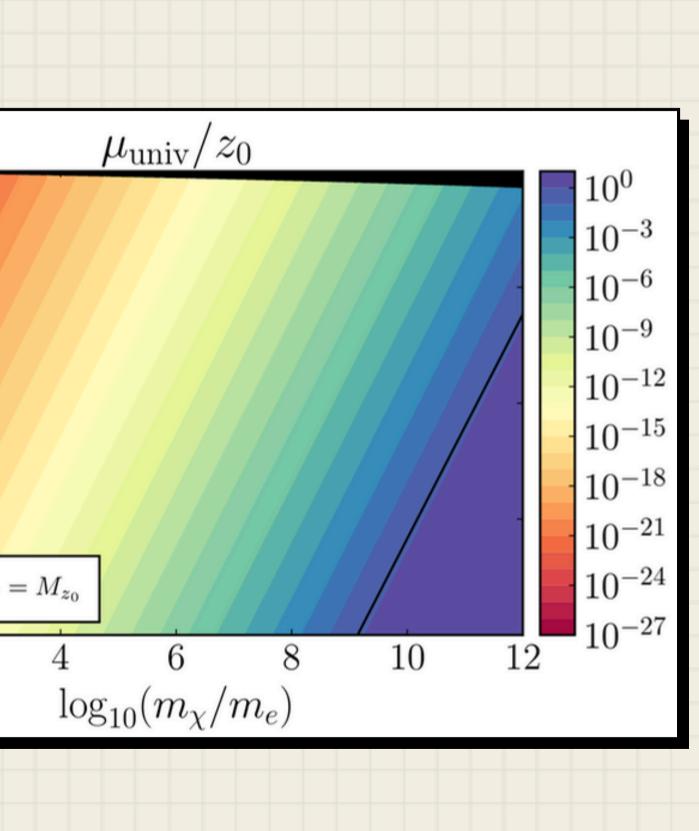


$$\Delta t_{\rm evap}(\bar{\mu}) = \frac{M_s^{\chi}}{s_0^{\chi} b_0^{\chi}} \cdot \begin{cases} \Delta \tau_{\rm schw}(\bar{\mu}) , \\ \Delta \tau_{\rm att}(\bar{\mu}) , \\ (\exp[(\bar{\mu} - z_0^{\chi}) \ b_0^{\chi}] - 1) + \Delta \tau_{\rm att}(z_0) \\ \exp[(\bar{\mu} - z_0^{\chi}) \ b_0^{\chi}] , \end{cases} M_{\rm univ}$$

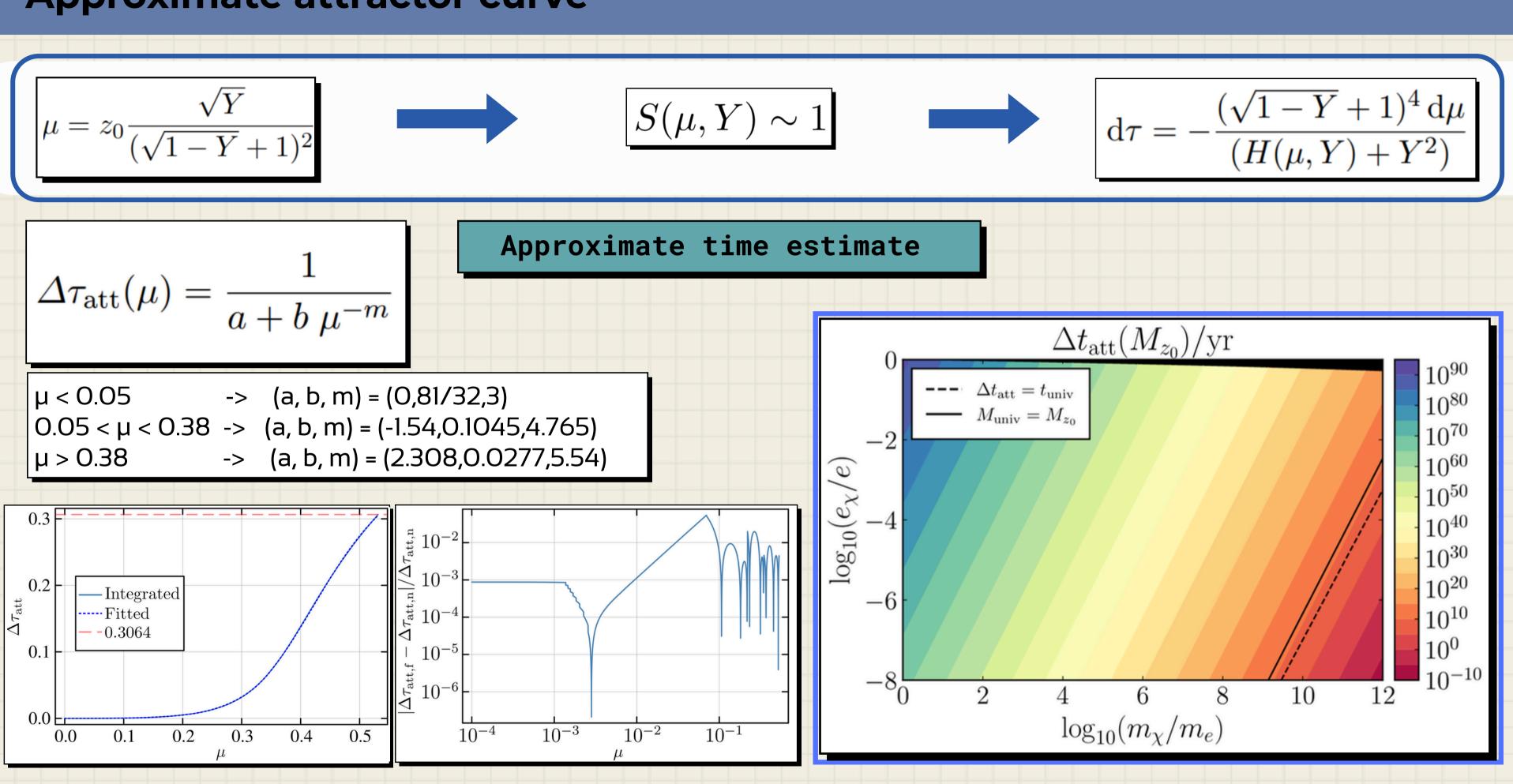
 $\begin{cases} M_{\rm schw} , & \bar{\mu} \ll z_0^{\chi} \\ M_{\rm att}^{\rm univ} , & \bar{\mu} \leq z_0^{\chi} \\ M_{\rm near-extr} , & \bar{\mu} > z_0^{\chi} \\ M_{\rm extr} , & \bar{\mu} - z_0^{\chi} \gg 1/b_0^{\chi} \end{cases}$ $_{iv} =$

Small Y and/or small µ limit

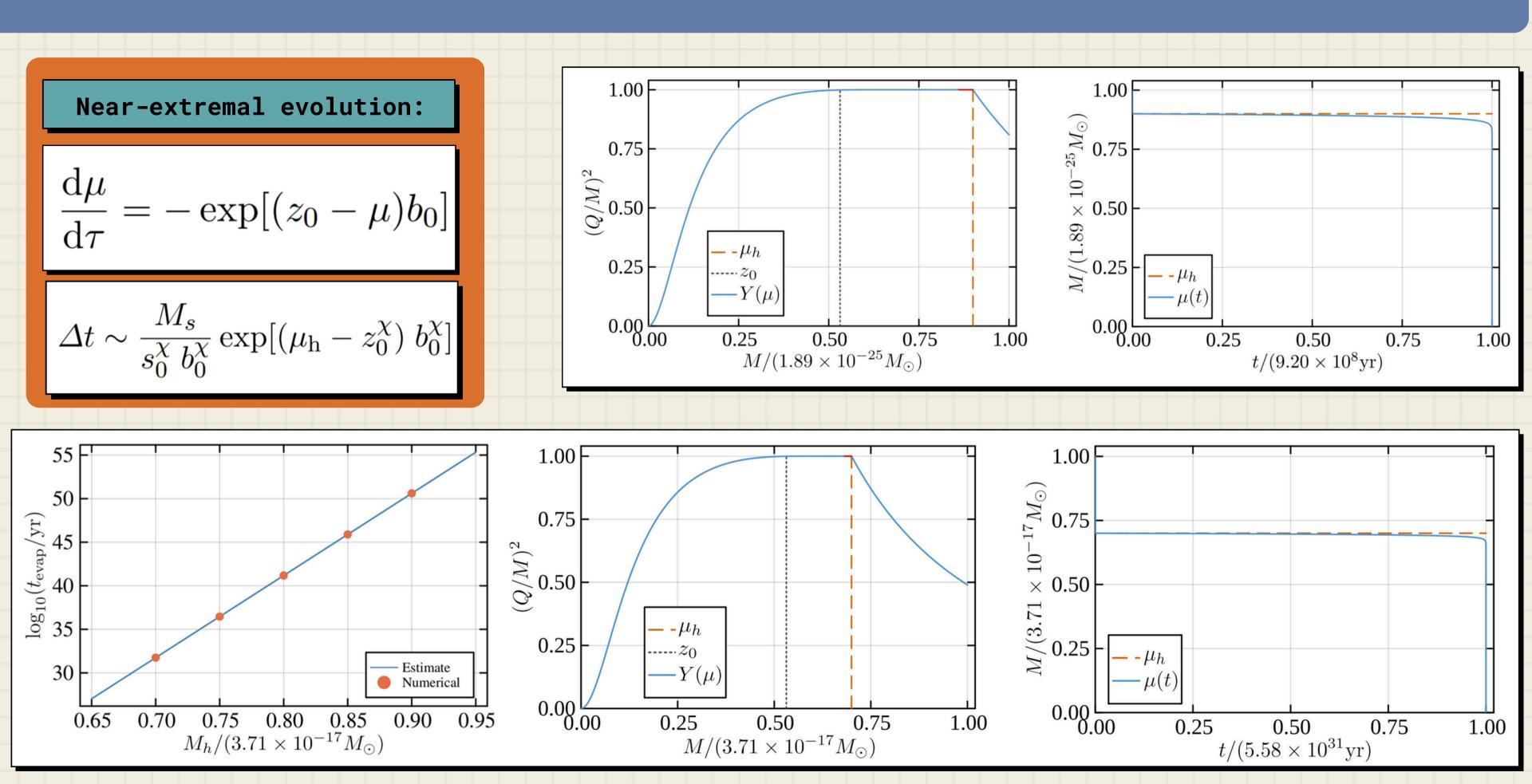
$$\begin{split} \frac{\mathrm{d}\mu}{\mathrm{d}\tau} &= -\frac{(H(\mu,Y) + S(\mu,Y)Y^2)}{(\sqrt{1-Y}+1)^4}, \\ \Delta \tau \quad \stackrel{Y \to 0}{=} \quad -\int_{\mu}^{0} \frac{32}{27} \tilde{\mu}^2 \,\mathrm{d}\tilde{\mu} \\ \to \quad \Delta \tau_{\mathrm{schw}} \quad \stackrel{Y \to 0}{=} \quad \frac{32}{81} \mu^3 \\ \Delta t &= \frac{M_{\mathrm{s}}^{\chi}}{s_0^{\chi}} \; \Delta \tau_{\mathrm{schw}} = \frac{1920\pi}{\alpha \hbar} \left[\frac{32}{81} (M_{\mathrm{s}}^{\chi} \mu)^3 \right] \\ &= \frac{1920\pi}{\alpha \hbar} \left[\frac{32}{81} M^3 \right] = \Delta t_{\mathrm{schw}} \end{split}$$



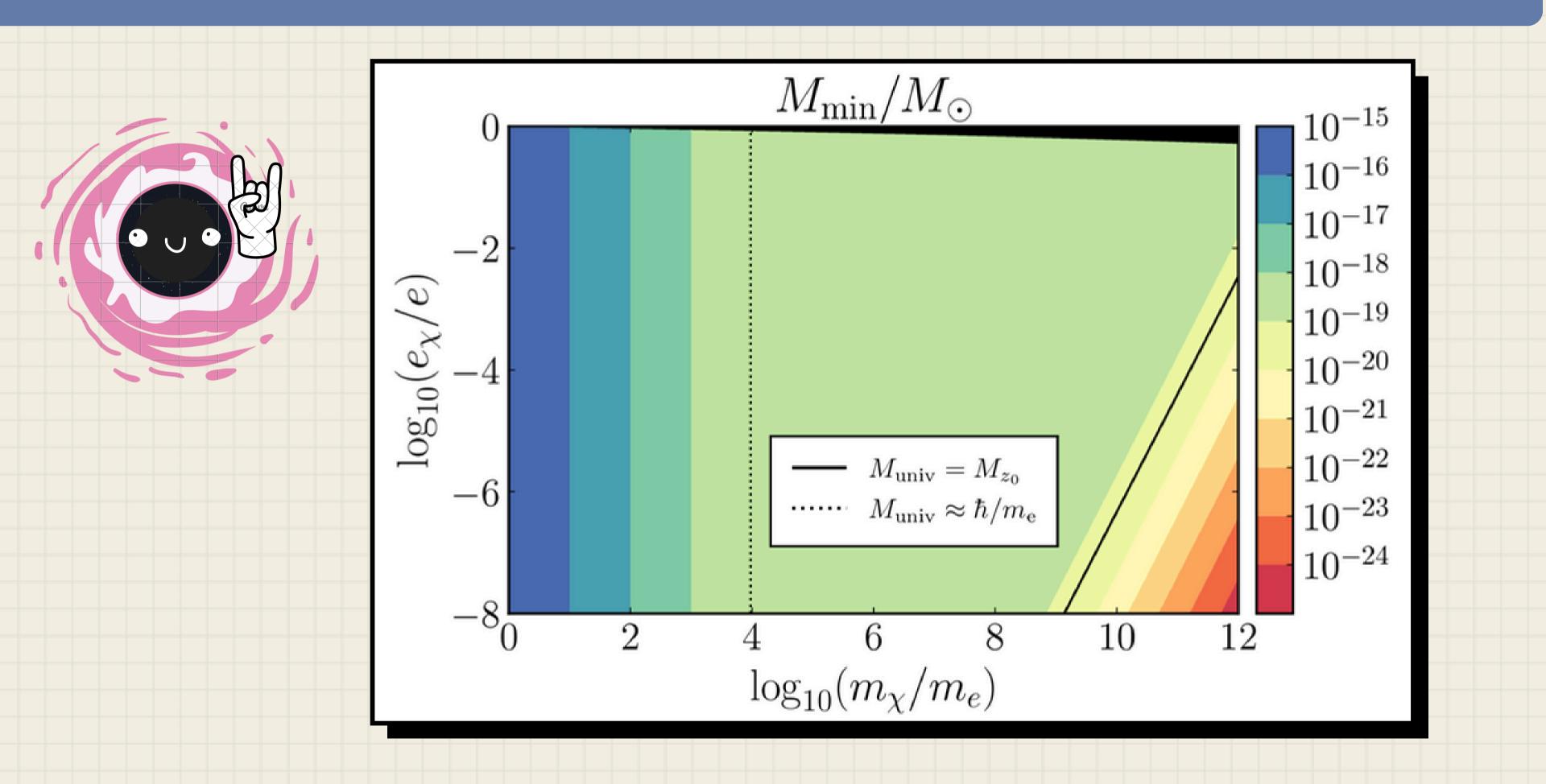
Approximate attractor curve



Near extremal evolution



Long Live (tiny) Black Holes!

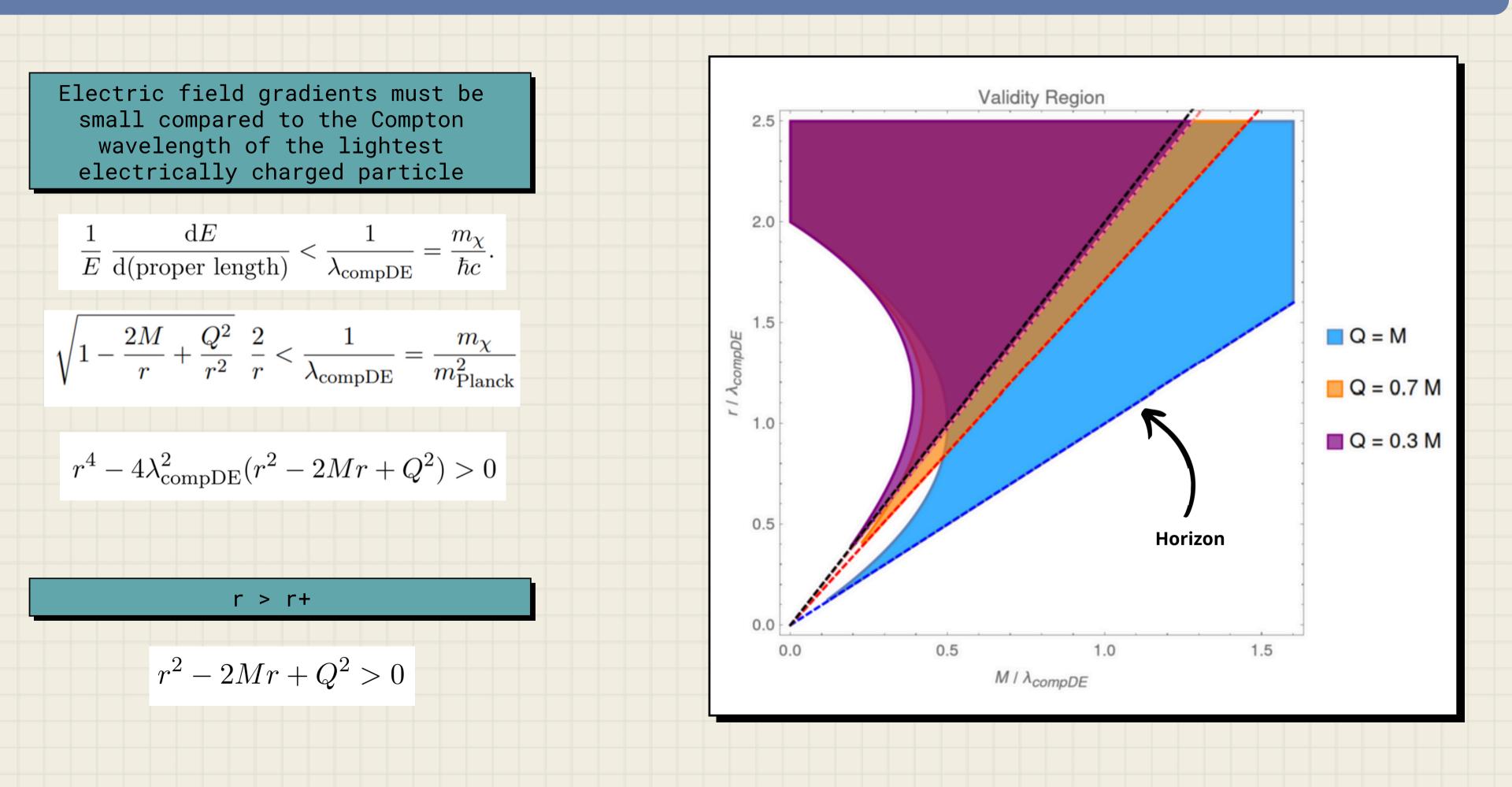


Conclusions

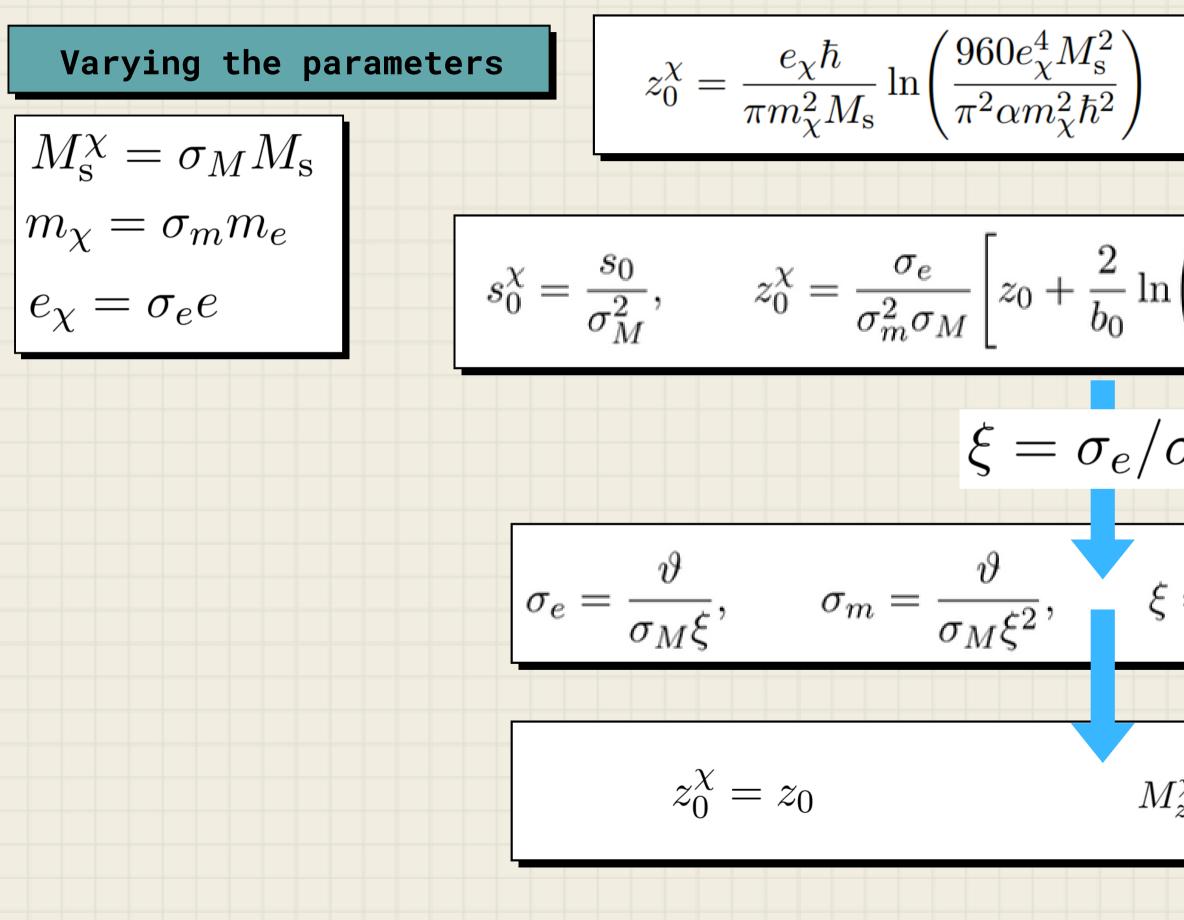
- Reissner-Nordstrom black holes have very interesting evaporation evolution for certain • mass ranges;
- If PBHs can form with an initial dark U(1) charge, they would not discharge via accreation effects, allowing them to follow the mass dissipation curve and achieve near-extremality;
- Given the right combination of dark-electron charge, mass and initial PBH mass, PBHs of • masses below 10⁽⁻¹⁵⁾ solar masses can still account for the total amount of dark matter in the universe.
- And Long Live Black Holes!

ARXIV: 2503.20696

The Schwinger effect validity region



Rescaling relations



$$M_{z_0} = z_0 M_s$$

$$\left(\frac{\sigma_e^2 \sigma_M}{\sigma_m}\right) \Big], \quad b_0^{\chi} = \frac{\sigma_m^2 \sigma_M}{\sigma_e} b_0$$

$$\mathcal{T}_m$$

$$f_{z_0}^{\chi} = \xi(\vartheta) = \left(\frac{b_0 z_0 \vartheta}{b_0 z_0 + 2 \ln \vartheta}\right)^{1/3}$$

$$f_{z_0}^{\chi} = \frac{\vartheta^{1/3}}{\sigma_m} \left(\frac{b_0 z_0 + 2 \ln \vartheta}{b_0 z_0}\right)^{2/3} M_{z_0}$$

Regarding the discreteness of states near extremality

$$M - Q \lesssim E_{\text{brk.}} \equiv \frac{M_{Pl}}{Q^3}$$

(from 2411.03447 in weird units)

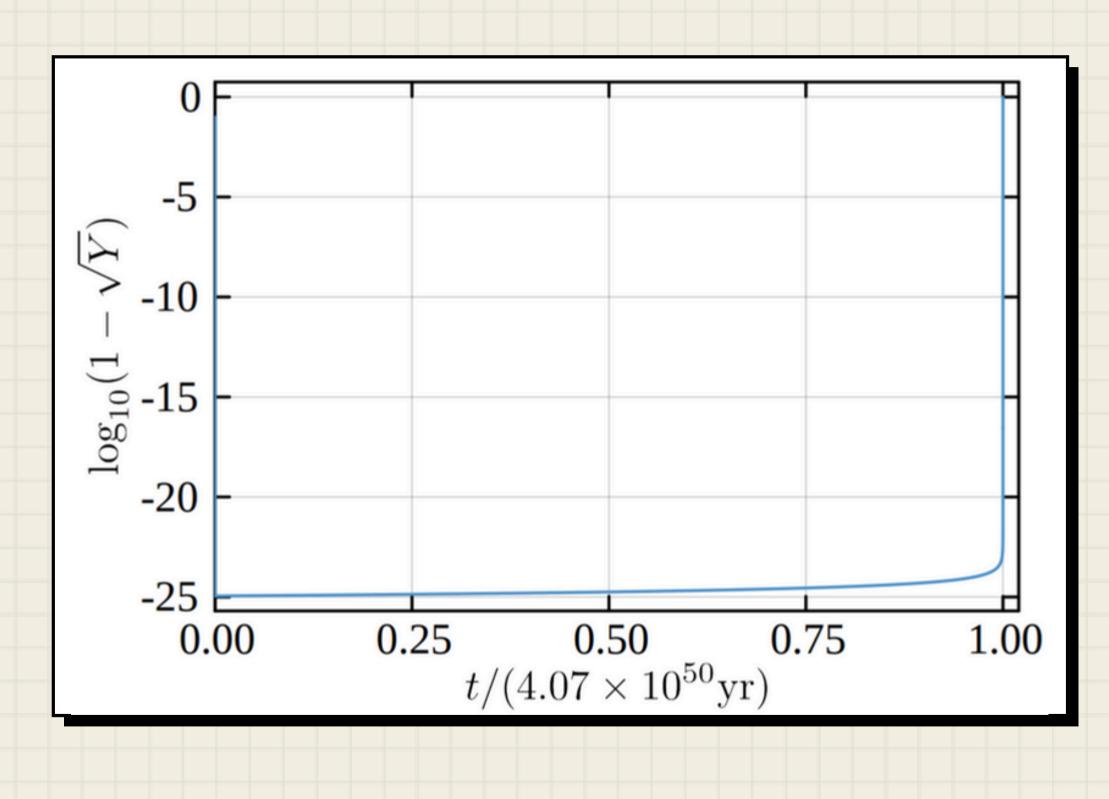
$$M - Q \gg m_{\rm Planck}^4 / Q^3$$

$$Y^{3/2}(1-\sqrt{Y}) \gg (m_{\text{Planck}}/M)^4$$

In our analysis

smallest Y value
$$\sqrt{Y} \sim 1-10^{-25}$$

smallest mass $10^{-25} M_{\odot} \sim 10^{13} m_{\rm Planck}$



$$(m_{\rm Planck}/M)^4 \sim 10^{-52}$$

Near extremal evolution

Evaporation times

ϱ/ϱ_0	$\mu_{\rm h} = 0.70$	$\mu_{ m h} = 0.75$	$\mu_{ m h} = 0.80$	$\mu_{\rm h} = 0.85$	$\mu_{ m h} = 0.90$
10^{-14}	$5.58 imes 10^{31}$	$2.90 imes 10^{36}$	$1.51 imes 10^{41}$	$7.83 imes 10^{45}$	$4.07 imes 10^{50}$
10^{-15}	4.94×10^{23}	$6.82 imes 10^{27}$	9.42×10^{31}	$1.30 imes 10^{36}$	1.80×10^{40}
10^{-16}	4.16×10^{15}	1.51×10^{19}	5.54×10^{22}	$2.03 imes 10^{26}$	$7.43 imes 10^{29}$
10^{-17}	$3.29 imes 10^7$	3.12×10^{10}	$3.00 imes 10^{13}$	2.90×10^{16}	2.80×10^{19}
10^{-18}	$2.43 imes 10^{-1}$	$5.80 imes 10^1$	1.45×10^4	$3.64 imes 10^6$	9.20×10^8

Table 1: Evaporation times (in years) as a function of the 'hanging mass' $\mu_{\rm h}$ and charge to mass ratio, where $\varrho = e_{\chi}/m_{\chi}$ is the rescaled charge to mass ratio, and $\varrho_0 = 2.04 \times 10^{21} \sqrt{4\pi\varepsilon_0 G}$ corresponds to the standard value in electrodynamics. In each case, the electron charge is rescaled by a factor $\sigma_e = 10^{-4}$.

Evapo	ration	times:	approximation	VS.	numerical	results

	ϱ/ϱ_0	$\mu_{\rm h} = 0.70$	$\mu_{\rm h} = 0.75$	$\mu_{\rm h} = 0.80$	$\mu_{\rm h} = 0.85$	$\mu_{\rm h} = 0.90$
	10^{-14}	4.83×10^{-6}	$1.26 imes 10^{-7}$	3.34×10^{-9}	8.99×10^{-11}	3.25×10^{-12}
	10^{-15}	$2.52 imes 10^{-5}$	1.00×10^{-6}	4.05×10^{-8}	1.65×10^{-9}	6.90×10^{-11}
ĺ	10^{-16}	1.46×10^{-4}	8.67×10^{-6}	5.28×10^{-7}	3.28×10^{-8}	2.06×10^{-9}
	10^{-17}	$1.13 imes 10^{-3}$	$9.25 imes 10^{-5}$	8.13×10^{-6}	$7.45 imes 10^{-7}$	$7.03 imes 10^{-8}$
ĺ	10^{-18}	4.98×10^{-2}	3.12×10^{-3}	2.33×10^{-4}	2.59×10^{-5}	3.31×10^{-6}

