Confronting the Cosmic Dipole Tension

Systematics, Surveys and Statistics

Oliver Oayda

PhD Candidate Sydney Institute for Astronomy The University of Sydney

June 26, 2025

Supervised by Geraint Lewis Tara Murphy

CosmoVerse@Istanbul

June 2025

The cosmological principle might be in trouble. Future surveys will be decisive. How can we prepare?

The Kinematic Dipole

Figure 1: CMB temperature map (dipole excluded; Planck).

The Kinematic Dipole

Figure 1: CMB temperature map (dipole included; BeyondPlanck). ★: dipole direction.

The Kinematic Dipole

Figure 1: CMB temperature map (dipole included; BeyondPlanck). ★: dipole direction.

$$\mathcal{D}_{\mathsf{CMB}} = [2 + x (1 + \alpha)] \frac{v_{\mathsf{CMB}}}{c}.$$

Our motion \implies a dipole in source density.

$$\mathcal{D}_{\mathsf{CMB}} = [2 + x (1 + \alpha)] \frac{v_{\mathsf{CMB}}}{c}.$$

Typical values: 0.004 - 0.007.

A 0.5% effect!

The Amplitude Excess

The Amplitude Excess

The Amplitude Excess

Cosmic dipole should be consistent with CMB dipole...

All is well!

Wait...

The dipole tension, like the Hubble tension, challenges the fiducial ∧CDM paradigm.

1. Systematics

• Are we measuring what we think we're measuring?

2. Survey design or Strategy

• How do we optimise information?

3. Statistical framework

• Can different frameworks help us?

1. Systematics

$\circ~$ Are we measuring what we think we're measuring?

2. Survey design or Strategy

• How do we optimise information?

3. Statistical framework

• Can different frameworks help us?

1. Systematics

· Are we measuring what we think we're measuring?

2. Survey design or Strategy

• How do we optimise information?

3. Statistical framework

• Can different frameworks help us?

- 1. Systematics
 - Are we measuring what we think we're measuring?
- 2. Survey design or Strategy
 - $\circ~$ How do we optimise information?
- 3. Statistical framework
 - Can different frameworks help us?

- 1. Systematics
 - Are we measuring what we think we're measuring?
- 2. Survey design or Strategy
 - $\circ~$ How do we optimise information?
- 3. Statistical framework
 - Can different frameworks help us?

- 1. Systematics
 - Are we measuring what we think we're measuring?
- 2. Survey design or Strategy
 - How do we optimise information?
- 3. Statistical framework
 - Can different frameworks help us?

Optical Quasars — A Dusty Death?

The cosmic dipole in the Quaia sample of quasars: a Bayesian analysis

Vasudev Mittal⁰,¹* Oliver T. Oayda²*[†] and Geraint F. Lewis⁰²

¹Department of Physical Sciences, IISER Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India ²Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006, Australia,

- Quaia sample, Gaia DR3 quasars
- Storey-Fisher et al. (2024)

Optical Quasars — A Dusty Death?

The cosmic dipole in the Quaia sample of quasars: a Bayesian analysis

Vasudev Mittal⁰,¹* Oliver T. Oayda²* † and Geraint F. Lewis⁰²

¹Department of Physical Sciences, IISER Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India ²Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006, Australia,

- Quaia sample, Gaia DR3 quasars
- Storey-Fisher et al. (2024)

Optical Quasars — A Dusty Death?

Vasudev Mittal⁰,¹* Oliver T. Oayda²*[†] and Geraint F. Lewis⁰²

¹Department of Physical Sciences, IISER Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India ²Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006, Australia,

SYSTEMATICS

A Bayesian approach to the cosmic dipole in radio galaxy surveys: joint analysis of NVSS & RACS

Oliver T. Oayda⁹,¹* Vasudev Mittal⁹,^{1,2} Geraint F. Lewis⁹ and Tara Murphy⁹

¹Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006, Australia
 ²Department of Physical Sciences, IISER Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India

A Bayesian approach to the cosmic dipole in radio galaxy surveys: joint analysis of NVSS & RACS

Oliver T. Oayda⁹,¹ Vasudev Mittal⁹,^{1,2} Geraint F. Lewis⁹ and Tara Murphy⁹

¹Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006, Australia
 ²Department of Physical Sciences, IISER Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India

A Bayesian approach to the cosmic dipole in radio galaxy surveys: joint analysis of NVSS & RACS

Oliver T. Oayda⁹,¹* Vasudev Mittal⁹,^{1,2} Geraint F. Lewis⁹ and Tara Murphy⁹

¹Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006, Australia
²Department of Physical Sciences, IISER Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India

Cross-matching up to $z \approx 0.04 \implies 10-15\%$ drop in \mathcal{D}

A Bayesian approach to the cosmic dipole in radio galaxy surveys: joint analysis of NVSS & RACS

Oliver T. Oayda⁹, ¹* Vasudev Mittal⁹, ^{1,2} Geraint F. Lewis⁹¹ and Tara Murphy⁹¹ ¹Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006, Australia ²Department of Physical Sciences, IISER Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India NVSS amplitude posterior RACS-low1 amplitude posterior $\mathcal{D}_{\mathrm{CMB}}$ $\mathcal{D}_{\mathrm{CMB}}$ 0.000 0.0050.010 0.0150.020 0.000 0.0050.010 0.0150.020 Dipole amplitude DDipole amplitude \mathcal{D} No local sources With local sources No local sources With local sources

Pure kinematic interpretation an approximation...

- Generate mock SKA source catalogues/maps based on observing config (Hale, Tiwari and von Hausegger).
- Input: ACDM matter power spectrum.
- $\ell = 1$ moment not kinematic!

- Generate mock SKA source catalogues/maps based on observing config (Hale, Tiwari and von Hausegger).
- Input: ACDM matter power spectrum.
- $\ell = 1$ moment not kinematic!

- Generate mock SKA source catalogues/maps based on observing config (Hale, Tiwari and von Hausegger).
- Input: ACDM matter power spectrum.
- $\ell = 1$ moment not kinematic!

- Generate mock SKA source catalogues/maps based on observing config (Hale, Tiwari and von Hausegger).
- Input: ACDM matter power spectrum.
- $\ell = 1$ moment not kinematic!

- Generate mock SKA source catalogues/maps based on observing config (Hale, Tiwari and von Hausegger).
- Input: ACDM matter power spectrum.
- $\ell = 1$ moment not kinematic!

Clustering 'drags' inferred dipole. $D_{\text{clust.}} \approx 0.002$, $D_{\text{kin.}} \approx 0.005$

Cosmic multipoles in galaxy surveys – I. How inferences depend on source counts and masks

- Synthesis of source count, sky coverage and position of visible sky.
- Optimising these yields the highest information (D_{KL}) .

Cosmic multipoles in galaxy surveys – I. How inferences depend on source counts and masks

- Synthesis of source count, sky coverage and position of visible sky.
- Optimising these yields the highest information (D_{KL}) .

Cosmic multipoles in galaxy surveys – I. How inferences depend on source counts and masks

- Synthesis of source count, sky coverage and position of visible sky.
- Optimising these yields the highest information (D_{KL}) .

Cosmic multipoles in galaxy surveys – I. How inferences depend on source counts and masks

- Synthesis of source count, sky coverage and position of visible sky.
- Optimising these yields the highest information (D_{KL}) .

Cosmic multipoles in galaxy surveys – I. How inferences depend on source counts and masks

- Synthesis of source count, sky coverage and position of visible sky.
- Optimising these yields the highest information (D_{KL}) .

Cosmic multipoles in galaxy surveys – I. How inferences depend on source counts and masks

- Synthesis of source count, sky coverage and position of visible sky.
- Optimising these yields the highest information (D_{KL}) .

Why do we want to account for higher ℓ 's?

• Incomplete sky coverage \implies power leakage (Abghari et al. 2024).

Journeying Towards Higher Orders

Why do we want to account for higher ℓ 's?

- Incomplete sky coverage \implies power leakage (Abghari et al. 2024).
- CatWISE2020: ecliptic bias \implies quadrupole ($\ell = 2$).
- Higher order multipoles?
- From Abghari et al. (2024).

Journeying Towards Higher Orders

Why do we want to account for higher ℓ 's?

• Incomplete sky coverage \implies power leakage (Abghari et al. 2024).

The dipole & quadrupole are disentangled from each other!

Journeying Towards Higher Orders

(2025) MNRAS 537(1)

Why do we want to account for higher ℓ 's?

• Incomplete sky coverage \implies power leakage (Abghari et al. 2024).

The dipole & octupole are disentangled from each other!

STATISTICS

STATISTICS

The classic likelihood-based approach:

$$P(\boldsymbol{\Theta}|\mathbf{D}, M) = \frac{\mathcal{L}(\mathbf{D}|\boldsymbol{\Theta}, M) \, \pi(\boldsymbol{\Theta}|M)}{\mathcal{Z}(\mathbf{D}|M)}.$$

STATISTICS

The classic likelihood-based approach:

$$P(\mathbf{\Theta}|\mathbf{D}, M) = \frac{\mathcal{L}(\mathbf{D}|\mathbf{\Theta}, M) \pi(\mathbf{\Theta}|M)}{\mathcal{Z}(\mathbf{D}|M)}.$$

We suppose $P(N_i|M_{dipole}) = Pois(\lambda_i)$ where

$$\lambda_i = \bar{N}(1 + \mathcal{D}\cos\theta).$$

STATISTICS

Don't know \mathcal{L} ? No problem!

STATISTICS

Don't know \mathcal{L} ? No problem!

Take data-generating process $f_M : \Theta \to \mathbf{D}$.

STATISTICS

Don't know \mathcal{L} ? No problem!

Take data-generating process $f_M : \Theta \to \mathbf{D}$.

Use neural network to learn $P(\Theta | \mathbf{D}, M)$.

This is Simulation-based Inference.

Simulating CatWISE

- Photometric noise varies with sky position.
- Mimics CatWISE coverage variation.
- Eddington-bias-like effect: can simulate!

Simulating CatWISE

- Photometric noise varies with sky position.
- Mimics CatWISE coverage variation.
- Eddington-bias-like effect: can simulate!

STATISTICS

Simulating CatWISE

 The dipole tension is an outstanding problem for ΛCDM — alongside the H₀ tension.

- The dipole tension is an outstanding problem for ΛCDM — alongside the H₀ tension.
- Future surveys will be decisive.

- The dipole tension is an outstanding problem for ACDM alongside the H_0 tension.
- Future surveys will be decisive.
- Systematics

- The dipole tension is an outstanding problem for ACDM alongside the H_0 tension.
- Future surveys will be decisive.
- Systematics
 - Clustering dipole.

- The dipole tension is an outstanding problem for ACDM alongside the H_0 tension.
- Future surveys will be decisive.
- Systematics
 - Clustering dipole.
 - Higher order effects, e.g. CatWISE scanning law.

- The dipole tension is an outstanding problem for ACDM alongside the H_0 tension.
- Future surveys will be decisive.
- Systematics
 - Clustering dipole.
 - Higher order effects, e.g. CatWISE scanning law.
- Survey design or Strategy

- The dipole tension is an outstanding problem for ACDM alongside the H_0 tension.
- Future surveys will be decisive.
- Systematics
 - Clustering dipole.
 - Higher order effects, e.g. CatWISE scanning law.
- Survey design or Strategy
- Statistics

- The dipole tension is an outstanding problem for ACDM alongside the H_0 tension.
- Future surveys will be decisive.
- Systematics
 - Clustering dipole.
 - Higher order effects, e.g. CatWISE scanning law.
- Survey design or Strategy
- Statistics
 - SBI a way forward?