THE EFFECTIVE RUNNING HUBBLE CONSTANT IN SNe Ia AS A MARKER FOR THE DARK ENERGY NATURE

E. Fazzari, M.G. Dainotti, G. Montani, and A. Melchiorri

3rd general meeting of CosmoVerse Istanbul, 26th June 2025

Elisa Fazzari

PhD student Sapienza University of Rome

elisa.fazzari@uniroma1.it

Evolutionary Dark Energy vs Cosmological Constant scenario: DESI-DR2 results with a Flat- Λ CDM model:

Evolutionary Dark Energy vs Cosmological Constant scenario: DESI-DR2 results with a Flat- Λ CDM model:

$$egin{aligned} rac{D_M(z)}{r_d} &= rac{1}{H_0 r_d} \int_0^z rac{c \, dz'}{\sqrt{\Omega_{m0}(1+z')^3 + (1-\Omega_{m0})}} \ &rac{D_H(z)}{r_d} &= rac{c}{r_d H_0 \sqrt{\Omega_{m0}(1+z')^3 + (1-\Omega_{m0})}} \ &rac{D_V(z)}{r_d} &= rac{(z D_M(z)^2 D_H(z))^rac{1}{3}}{r_d} \end{aligned}$$

Evolutionary Dark Energy vs Cosmological Constant scenario:

		Ω_M	Ω_{Λ}	H_{0}	w_0	w_a
Pantheon+ & SH	DES - All Models					
$Flat\Lambda CDM$		0.334 ± 0.018	0.666 ± 0.018	73.6 ± 1.1	-	-
ACDM		0.306 ± 0.057	0.625 ± 0.084	73.4 ± 1.1	-	-
FlatwCDM		$0.309^{+0.063}_{-0.069}$	$0.691^{+0.069}_{-0.062}$	73.5 ± 1.1	-0.90 ± 0.14	2
$\mathrm{Flat} w_0 w_a \mathrm{CDM}$		$0.403\substack{+0.054\\-0.098}$	$0.597\substack{+0.098\\-0.054}$	73.3 ± 1.1	-0.93 ± 0.15	$-0.1^{+0.9}_{-2.0}$
	$\Omega_{\mathbf{M}}$	$\Omega_{\mathbf{K}}$		w ₀		Wa
DES-SN5YR (No Exter	rnal Priors)					
Flat ACDM	0.352 ± 0.017					
ΛCDM	$0.291\substack{+0.063\\-0.065}$	0.16 ± 0.16				•••
Flat wCDM	$0.264_{-0.096}^{+0.074}$		_	$0.80^{+0.14}_{-0.16}$		
Flat w ₀ w _a CDM	$0.495\substack{+0.033\\-0.043}$		_	$0.36\substack{+0.36\\-0.30}$	-8	$.8^{+3.7}_{-4.5}$

D. Brout, D. Scolnic et al., 2202.04077

DES-Y5 Collaboration, 2401.02929

Evolutionary Dark Energy vs Cosmological Constant scenario:

$_ w_0 w_a ext{CDM}$,	vs. Λ	CDM	
Datasets	$\Delta\chi^2_{ m MAP}$	Significance	$\Delta({ m DIC})$
DESI	-4.7	1.7σ	-0.8
$\mathrm{DESI+}(heta_*,\omega_\mathrm{b},\omega_\mathrm{bc})_\mathrm{CMB}$	-8.0	2.4σ	-4.4
DESI+CMB (no lensing)	-9.7	2.7σ	-5.9
DESI+CMB	-12.5	3.1σ	-8.7
DESI+Pantheon+	-4.9	1.7σ	-0.7
DESI+Union3	-10.1	2.7σ	-6.0
DESI+DESY5	-13.6	3.3σ	-9.3
DESI+DESY3 $(3 \times 2pt)$	-7.3	2.2σ	-2.8
DESI+DESY3 $(3 \times 2pt)$ +DESY5	-13.8	3.3σ	-9.1
DESI+CMB+Pantheon+	-10.7	2.8σ	-6.8
DESI+CMB+Union3	-17.4	3.8σ	-13.5
DESI+CMB+DESY5	-21.0	4.2σ	-17.2

DESI Collaboration, 2503.14738

Are SNe la alone really unable to reveal the presence of Evolutionary Dark Energy and not discriminate its nature?

Theory part

V #

What is the effective running Hubble constant?

A new diagnostic for Dark Energy:

Similar diagnostic tool for DE: DESI Collaboration, 2503.14743 Sahni et al., 0807.3548

$${\cal H}(z) = {\cal H}_0(z) E(z)^{\Lambda {
m CDM}}$$
 .

 ${\cal H}_0(z)=H_0rac{E(z)}{E(z)^{\Lambda{
m CDM}}}$

Dainotti et al., 2103.02117 Kazantzidis et al., 2004.02155 Jia et al., 2212.00238

What is the effective running Hubble constant?Similar diagnostic tool for DE:
DESI Collaboration, 2503.14743
Sahni et al., 0807.3548
$$H(z) = \mathcal{H}_0(z)E(z)^{\Lambda \text{CDM}} \longrightarrow \mathcal{H}_0(z) = H_0 \frac{E(z)}{E(z)^{\Lambda \text{CDM}}}$$
 $\mathcal{H}_0(z) = H_0 \frac{E(z)}{E(z)^{\Lambda \text{CDM}}}$ $\mathcal{H}_0(z) \equiv H_0 \sqrt{\frac{\Omega_m^0(1+z)^3+(1-\Omega_m^0)(1+z)^{3(1+w)}}{\Omega_m^0(1+z)^3+(1-\Omega_m^0)}}}$ $w\text{CDM}$ $\mathcal{H}_0(z) \equiv H_0 \sqrt{\frac{\Omega_m^0(1+z)^3+(1-\Omega_m^0)(1+z)^{3(1+w_0+w_0)}e^{-3wa\frac{z}{1+z}}}{\Omega_m^0(1+z)^3+(1-\Omega_m^0)}}}$ $w_0w_a\text{CDM}$

Dainotti et al., 2103.02117 Kazantzidis et al., 2004.02155 Jia et al., 2212.00238

Effective running Hubble constant Flat *w*CDM

Effective running Hubble constant Flat *w*CDM

$${\cal H}_0'^{w_0w_a}(z=0)=rac{3}{2}H_0(1-\Omega_{m0})(1+w_0)$$

arXiv:2506.04162

DESI-Collaboration, 2503.14738

arXiv:2506.04162

Ζ

1.
$$w ext{CDM}$$
 $\mathcal{H}_0(z) \equiv H_0 \sqrt{rac{\Omega_m^0(1+z)^3 + (1-\Omega_m^0)(1+z)^{3(1+w)}}{\Omega_m^0(1+z)^3 + (1-\Omega_m^0)}}$

2.
$$ext{CPL}'(w_0 = w_a)$$
 $extstyle \mathcal{H}_0(z) \equiv H_0 \sqrt{rac{\Omega_m^0(1+z)^3 + (1-\Omega_m^0)(1+z)^{3(1+2w)}e^{-3wrac{z}{1+z}}{\Omega_m^0(1+z)^3 + (1-\Omega_m^0)}}$

1.
$$w ext{CDM}$$
 $\mathcal{H}_0(z) \equiv H_0 \sqrt{rac{\Omega_m^0(1+z)^3 + (1-\Omega_m^0)(1+z)^{3(1+w)}}{\Omega_m^0(1+z)^3 + (1-\Omega_m^0)}}$

2. $ext{CPL}'(w_0 = w_a)$ $extstyle \mathcal{H}_0(z) \equiv H_0 \sqrt{rac{\Omega_m^0(1+z)^3 + (1-\Omega_m^0)(1+z)^{3(1+2w)}e^{-3wrac{z}{1+z}}{\Omega_m^0(1+z)^3 + (1-\Omega_m^0)}}$

3. Dynamical Dark Energy (DDE) model

Dark energy created by the variation of cosmological gravitational field

Dynamical Dark Energy (DDE) model

• Particle creation mechanism

 $ho \prime_{de}(z) = rac{3H}{(1+z)} [(1+w_{de})
ho_{de} + p_c]$

 $3Hp_c \equiv -\Gamma \left(1+w_{de}\right)
ho_{de}$

phenomenological constant particle creation rate

Lima et al., 0708.3397 Montani., 0101113 Elizalde et al., 2407.20285

Dynamical Dark Energy (DDE) model

Particle creation mechanism

 $\gamma_0 \equiv \Gamma/H_0$ $ho
u_{de}(z) = rac{3H}{(1+z)} [(1+w_{de})
ho_{de} + p_c]$ $ho_{de}(z) = rac{3}{1+z}(1+w_{de})\left(1-rac{\gamma_0}{3E(z)}
ight)
ho_{de},$ $3Hp_c\equiv -\Gamma\left(1+w_{de}
ight)
ho_{de}$

phenomenological constant particle creation rate

Lima et al., 0708.3397 Montani., 0101113 Elizalde et al., 2407.20285

Dynamical Dark Energy (DDE) model

• Particle creation mechanism

$$egin{aligned} &
ho \prime_{de}(z) = rac{3H}{(1+z)} [(1+w_{de})
ho_{de} + p_c] & \uparrow \ & \uparrow \ & \uparrow \ & 3Hp_c \equiv -\Gamma \left(1+w_{de}
ight)
ho_{de} &
ho \prime_{de}(z) = rac{3}{1+z} (1+w_{de}) \left(1-rac{\gamma_0}{3E(z)}
ight)
ho_{de} \end{aligned}$$

Theoretical constrain

$$q_0\equiv -1+rac{1}{2}(E^2)'_{ert_{z=0}}=q_0^{\Lambda ext{CDM}} \longrightarrow \gamma_0=3$$

Lemos et al., 1806.06781 Efstathiou, 2103.08723

 $- \Gamma / H$

Dynamical Dark Energy (DDE) model

 $E^2(z) = \Omega^0_m (1+z)^3 + ig(1-\Omega^0_mig)(1+z)^{3(1+w)} \exp\left\{-3(1+w)\int_0^z rac{dy}{(1+y)E(y)}
ight\}$

$$w_{eff}(z) = w - rac{1+w}{E(z)}$$

Dynamical Dark Energy (DDE) model

 $E^2(z) = \Omega^0_m (1+z)^3 + ig(1-\Omega^0_mig)(1+z)^{3(1+w)} \exp\left\{-3(1+w)\int_0^z rac{dy}{(1+y)E(y)}
ight\}$

$${\cal H}_0(z)\equiv H_0\sqrt{rac{\Omega_m^0(1\!+\!z)^3\!+\!(1\!-\!\Omega_m^0)(1\!+\!z)^{3(1+w)}\expig\{-3(1\!+\!w)\int_0^zrac{dy}{(1\!+\!y)E(y)}ig\}}{\Omega_m^0(1\!+\!z)^3\!+\!(1\!-\!\Omega_m^0)}}$$

Recap of models

1.
$$w$$
CDM $\mathcal{H}_{0}(z) \equiv H_{0}\sqrt{\frac{\Omega_{m}^{0}(1+z)^{3}+(1-\Omega_{m}^{0})(1+z)^{3(1+w)}}{\Omega_{m}^{0}(1+z)^{3}+(1-\Omega_{m}^{0})}}}$
2. $CPL'(w_{0} = w_{a}) \qquad \mathcal{H}_{0}(z) \equiv H_{0}\sqrt{\frac{\Omega_{m}^{0}(1+z)^{3}+(1-\Omega_{m}^{0})(1+z)^{3(1+2w)}e^{-3w\frac{z}{1+z}}}{\Omega_{m}^{0}(1+z)^{3}+(1-\Omega_{m}^{0})}}}}$
3. $DDE \qquad \mathcal{H}_{0}(z) \equiv H_{0}\sqrt{\frac{\Omega_{m}^{0}(1+z)^{3}+(1-\Omega_{m}^{0})(1+z)^{3(1+w)}\exp\{-3(1+w)\int_{0}^{z}\frac{z}{(1+z)^{3}}}{\Omega_{m}^{0}(1+z)^{3}+(1-\Omega_{m}^{0})}}}}$
 $\mathcal{H}_{0}(z) \equiv H_{0}\sqrt{\frac{\mathcal{H}_{0}(z)^{2}}{\Omega_{m}^{0}(1+z)^{3}+(1-\Omega_{m}^{0})}}}$
 $\mathcal{H}_{0}(z) \equiv H_{0}$
 $\mathcal{H}_{0}(z) \equiv H_{0}$

Dainotti et al., 2103.02117

arXiv:2506.04162

V #

Model testing part

Binned SNe Ia datasets:

Dainotti et al., 2201.09848 Dainotti et al., 2501.11772

• Pantheon binned SNe la sample

 Master binned SNe Ia sample: SNe Ia from DESY5, Pantheon+, Pantheon and JLA without duplicates

• Same priors as those used to obtain the binned data samples

Prior for different datasets				
Parameter	Background	Pantheon	Master	
Ω_{m0} $H_0 (km/s/Mpc)$ W	$\mathcal{U}[0.01, 0.99]$ $\mathcal{U}[20, 100]$ $\mathcal{U}[-7, 3]$	$\mathcal{N}[0.298, 0.022]$ $\mathcal{N}[70.393 \pm 2.158]$ $\mathcal{U}[-7, 3]$	$\mathcal{N}[0.322, 0.025]$ $\mathcal{U}[60, 80]$ $\mathcal{U}[-7, 3]$	

• MCMC performed with Cobaya

$$\chi^2_{tot} = \chi^2_{H_{0_{bin}}} + \chi^2_{\Omega_{m0_{bin}}}$$

• Backy [Giarè, Fazzari, in prep.]

code interfaced with Cobaya for testing late-time modified cosmological models using background observables

mostly useful for Dark Energy and Hubble tension

• *w* constrained with higher precision from binned SNe Ia compared to the full SNe Ia dataset

• *w* constrained with higher precision from binned SNe Ia compared to the full SNe Ia dataset

			Datas	ets	
		Master bin.	Pantheon bin.	Master	Pantheon
Ţ	H_0	69.865 ± 0.083	70.43 ± 0.24	69.11 ± 0.40	70.07 ± 0.43
VCDN	Ω_{m0}	0.3245 ± 0.0053	0.2978 ± 0.0047	0.318 ± 0.024	0.306 ± 0.039
	w	-1.012 ± 0.014	-1.047 ± 0.022	-0.904 ± 0.067	$-1.03^{+0.14}_{-0.12}$
	H_0	69.609 ± 0.078	69.77 ± 0.22	68.92 ± 0.39	69.81 ± 0.43
CPL'	Ω_{m0}	0.3257 ± 0.0053	0.2992 ± 0.0049	0.328 ± 0.023	0.322 ± 0.036
	w	-0.884 ± 0.012	-0.882 ± 0.019	-0.808 ± 0.061	$-0.94^{+0.11}_{-0.10}$
	H_0	69.838 ± 0.061	70.10 ± 0.14	69.50 ± 0.30	69.99 ± 0.31
DDE	Ω_{m0}	0.3247 ± 0.0054	0.2979 ± 0.0050	0.343 ± 0.024	0.311 ± 0.041
	w	-1.12 ± 0.14	-1.20 ± 0.16	$-1.06^{+0.85}_{-0.72}$	$-1.6^{+1.6}_{-1.2}$

• w CDM and DDE perform better compared to the CPL'

$\ln B_{i,ref} = \ln B_{ref} - \ln B_i$		Master	bin.	Pantheo	n bin.
$2.5 < \ln B_{i,ref} > 5.0$	Model	$\ln B_{i,\Lambda CDM}$	$\ln \mathbf{B}_{i,PL}$	$\ln \mathbf{B}_{i,\Lambda\text{CDM}}$	$\ln B_{i,PL}$
moderate	wCDM	4.64	6.02	2.43	4.65
loffrova at al. 1008	CPL'	14.51	15.90	14.52	16.73
Frotta, 0803.4089	DDE	3.09	4.48	2.56	4.77
Giarè, wgcosmo GitHub	PL	-1.38		-2.21	

- w CDM and DDE perform better compared to the CPL'
- CPL' model is significantly disfavored with respect to ΛCDM

$\ln B_{i,ref} = \ln B_{ref} - \ln B_i$		Master	bin.	Pantheo	n bin.
$\ln B_{i,ref} > 5 { m strong}$	Model	$ln B_{i,\Lambda CDM}$	$\ln \mathbf{B}_{i,PL}$	$\boxed{\ln \mathbf{B}_{i,\Lambda\text{CDM}}}$	$\ln \mathbf{B}_{i,PL}$
	wCDM	4.64	6.02	2.43	4.65
	CPL'	14.51	15.90	14.52	16.73
Jeffreys et al., 1998	DDE	3.09	4.48	2.56	4.77
Trotta, 0803.4089 Giarè, wgcosmo GitHub	PL	-1.38		-2.21	
arXiv:2506.04162					

- wCDM and DDE perform better compared to the CPL'
- CPL' model is significantly disfavored with respect to ΛCDM
- PL model emerges as the favored one

	Master	bin.	Pantheo	n bin.
Model	$\ln B_{i,\Lambda CDM}$	$\ln \mathbf{B}_{i,PL}$	$\ln B_{i,\Lambda CDM}$	$\ln \mathbf{B}_{i,PL}$
wCDM	4.64	6.02	2.43	4.65
CPL'	14.51	15.90	14.52	16.73
DDE	3.09	4.48	2.56	4.77
PL	-1.38		-2.21	
	Model wCDM CPL' DDE PL	Model In $B_{i,\Lambda CDM}$ wCDM 4.64 CPL' 14.51 DDE 3.09 PL -1.38	Master bin.Model $\ln B_{i,\Lambda CDM}$ $\ln B_{i,PL}$ wCDM4.646.02CPL'14.5115.90DDE3.094.48PL-1.38	ModelMaster bin.PantheoModel $\ln B_{i,\Lambda CDM}$ $\ln B_{i,PL}$ $\ln B_{i,\Lambda CDM}$ wCDM4.646.022.43CPL'14.5115.9014.52DDE3.094.482.56PL-1.382.21

Background analysis:

- Pantheon and Master SNe Ia
- DESI DR2 calibrated with Planck constraint on $r_d = \mathcal{N}[147.09, 0.26]$
- Cosmic Chronometer

Parameter	Background	Pantheon	Master
Ω_{m0}	$\mathcal{U}[0.01, 0.99]$	$\mathcal{N}[0.298, 0.022]$	$\mathcal{N}[0.322, 0.025]$
$H_0 (km/s/Mpc)$	$\mathcal{U}[20, 100]$	$\mathcal{N}[70.393 \pm 2.158]$	$\mathcal{U}[60, 80]$
w	$\mathcal{U}[-7, 3]$	$\mathcal{U}[-7, 3]$	$\mathcal{U}[-7, 3]$

Datasets

- Statistical uncertainties larger than those obtained from the binned SNe la data alone
- No 1σ discrimination between phantom and quintessence regimes for the wCDM and DDE models

		Master+DESI+CC	Pantheon+DESI+CC
V	H_0	67.27 ± 0.57	68.67 ± 0.72
CDN	Ω_{m0}	0.2969 ± 0.0092	0.2970 ± 0.0084
2	w	-0.873 ± 0.039	-0.972 ± 0.048
	H_0	66.95 ± 0.55	68.14 ± 0.66
CPL'	Ω_{m0}	0.3230 ± 0.0080	0.3185 ± 0.0077
	w	-0.777 ± 0.032	-0.845 ± 0.039
	H_0	68.36 ± 0.45	69.12 ± 0.51
DDE	Ω_{m0}	$0.305^{+0.015}_{-0.013}$	$0.284^{+0.028}_{-0.020}$
	W	-0.90 ± 0.28	-0.79 ± 0.43
MC	H_0	68.37 ± 0.46	69.01 ± 0.47
VCI	Ω_{m0}	0.3102 ± 0.0079	0.2977 ± 0.0077

- -

Dark Energy EoS

- -

1. $\mathcal{H}_0(z)$ is a useful tool able to discriminate between quintessence or phantom DE simply looking at its increasing or decreasing behavior with the redshift

- 1. $\mathcal{H}_0(z)$ is a useful tool able to discriminate between quintessence or phantom DE simply looking at its increasing or decreasing behavior with the redshift
- 2. Among the DE models, binned data prefer phantom dark energy scenario

- 1. $\mathcal{H}_0(z)$ is a useful tool able to discriminate between quintessence or phantom DE simply looking at its increasing or decreasing behavior with the redshift
- 2. Among the DE models, binned data prefer phantom dark energy scenario
- 3. PL and ΛCDM are the most favoured parametrizations from the SNe Ia binned data

- 1. $\mathcal{H}_0(z)$ is a useful tool able to discriminate between quintessence or phantom DE simply looking at its increasing or decreasing behavior with the redshift
- 2. Among the DE models, binned data prefer phantom dark energy scenario
- 3. PL and ΛCDM are the most favoured parametrizations from the SNe Ia binned data

Thank you

Backup slides

Phantom

V #

Quintessence

Backup slides

Backup slides

 $h^2(z)=rac{H^2(z)}{H_0^2}$

$$Om(z) = rac{h^2(z) - 1}{(1 + z)^3 - 1}$$

DESI Collaboration, 2503.14743 Sahni et al., 0807.3548