The Hubble Tension as the Signature of a New Phase Transition

Florian Niedermann Nordita

in collaboration with:

Martin S. Sloth (Universe-Origins, SDU)

and

Aleksandr Chatrchyan, Mathias Garny, Vivian Poulin, Henrique Rubira

and based on earlier work with:

Juan Cruz, Steen Hannestad, Emil Holm, Thomas Tram.

CosmoVerse @Istanbul 2025

24–26 June 2025

A post-BBN phase transition is highly constrained scenario for new dark sector physics.

- A post-BBN phase transition is highly constrained scenario for new dark sector physics.
- lt can be realized in terms of simple microphysics.

- A post-BBN phase transition is highly constrained scenario for new dark sector physics.
- lt can be realized in terms of simple microphysics.
- Provides theoretically consistent approach to address the **Hubble tension**.

- A post-BBN phase transition is highly constrained scenario for new dark sector physics.
- It can be realized in terms of simple microphysics.
- Provides theoretically consistent approach to address the Hubble tension.
- ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find — we only got started!

- A post-BBN phase transition is highly constrained scenario for new dark sector physics.
- It can be realized in terms of simple microphysics.
- Provides theoretically consistent approach to address the Hubble tension.
- ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find — we only got started!

New physics but how?

- A post-BBN phase transition is highly constrained scenario for new dark sector physics.
- It can be realized in terms of simple microphysics.
- Provides theoretically consistent approach to address the Hubble tension.
- ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find — we only got started!

New physics but how?

- A post-BBN phase transition is highly constrained scenario for new dark sector physics.
- It can be realized in terms of simple microphysics.
- Provides theoretically consistent approach to address the **Hubble tension**.
- ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find — we only got started!

New physics but how?

BAO and Supernovae:

- A post-BBN phase transition is highly constrained scenario for new dark sector physics.
- It can be realized in terms of simple microphysics.
- Provides theoretically consistent approach to address the **Hubble tension**.
- ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find — we only got started!

New physics but how?

BAO and Supernovae:

- A post-BBN phase transition is highly constrained scenario for new dark sector physics.
- It can be realized in terms of simple microphysics.
- Provides theoretically consistent approach to address the Hubble tension.
- ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find we only got started!

New physics but how?

BAO and Supernovae:

$$H_0 r_s \simeq const$$
 $ightharpoonup model-independent$

- A post-BBN phase transition is highly constrained scenario for new dark sector physics.
- It can be realized in terms of simple microphysics.
- Provides theoretically consistent approach to address the **Hubble tension**.
- ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find — we only got started!

New physics but how?

BAO and Supernovae:

$$H_0 r_s \simeq const$$
 \blacksquare model-independent

- A post-BBN phase transition is highly constrained scenario for new dark sector physics.
- It can be realized in terms of simple microphysics.
- Provides theoretically consistent approach to address the **Hubble tension**.
- ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find — we only got started!

New physics but how?

BAO and Supernovae:

$$H_0 r_s \simeq const$$
 $ightharpoonup model-independent$

- A post-BBN phase transition is highly constrained scenario for new dark sector physics.
- lt can be realized in terms of simple microphysics.
- Provides theoretically consistent approach to address the Hubble tension.
- ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find we only got started!

New physics but how?

BAO and Supernovae:

$$H_0 r_s \simeq const$$
 \blacksquare model-independent

- A post-BBN phase transition is highly constrained scenario for new dark sector physics.
- It can be realized in terms of simple microphysics.
- Provides theoretically consistent approach to address the **Hubble tension**.
- ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find — we only got started!

New physics but how?

BAO and Supernovae:

$$H_0 r_s \simeq const$$
 $ightharpoonup model-independent$

$$r_s = \int_{z_*}^{\infty} \frac{c_s(z)}{H(z)}$$
 increases $H(z)$ prior to recombination

$$r_s = \int_{z_*}^{\infty} \frac{c_s(z)}{H(z)}$$
 increases $H(z)$ prior to recombination
$$H^2(z) = \frac{1}{3M_{\rm pl}^2} \left[\rho_{\Lambda} + \rho_{\rm matter}(z) + \rho_r(z) + \left[\rho_X(z) \right] \right]$$
 new component (>10%)

ldea: Energy injection before recombination.

$$r_s=\int_{z_*}^{\infty} \frac{c_s(z)}{H(z)}$$
 increases $H(z)$ prior to recombination
$$H^2(z)=\frac{1}{3M_{\rm pl}^2}\left[\rho_{\Lambda}+\rho_{\rm matter}(z)+\rho_r(z)+\rho_X(z)\right]$$
 new component (>10%)

- Idea: Energy injection before recombination.
- This suggests new physics pre recombination in redshift window:

1100 < z < 25000

Modify history of universe when highly constrained!

$$r_s = \int_{z_*}^{\infty} \frac{c_s(z)}{H(z)}$$
 increases $H(z)$ prior to recombination
$$H^2(z) = \frac{1}{3M_{\rm pl}^2} \left[\rho_{\Lambda} + \rho_{\rm matter}(z) + \rho_r(z) + \rho_X(z) \right]$$
 new component (>10%)

- Idea: Energy injection before recombination.
- This suggests new physics pre recombination in redshift window:

1100 < z < 25000

Modify history of universe when highly constrained!

$$r_s = \int_{z_*}^{\infty} \frac{c_s(z)}{H(z)}$$
 increases $H(z)$ prior to recombination
$$H^2(z) = \frac{1}{3M_{\rm pl}^2} \left[\rho_{\Lambda} + \rho_{\rm matter}(z) + \rho_r(z) + \rho_X(z) \right]$$
 new component (>10%)

- Idea: Energy injection before recombination.
- This suggests new physics pre recombination in redshift window:

1100 < z < 25000

Modify history of universe when highly constrained!

EDE: Provides **sharp** injection before matter-radiation equality — Cold NEDE.

$$r_s=\int_{z_*}^\infty rac{c_s(z)}{H(z)}$$
 increases $H(z)$ prior to recombination
$$H^2(z)=rac{1}{3M_{
m pl}^2}\left[
ho_\Lambda+
ho_{
m matter}(z)+
ho_r(z)+\left[
ho_X(z)
ight]$$
 new component (>10%)

- ldea: Energy injection before recombination.
- This suggests new physics pre recombination in redshift window:

1100 < z < 25000

Modify history of universe when highly constrained!

- **EDE:** Provides **sharp** injection before matter-radiation equality Cold NEDE.
- **DR:** Provides **continuous** injection before matter-radiation equality Hot NEDE.

- Primary effect of lowering sound horizon is to increase H0.
- What about potentially harmful secondary effects?

- Primary effect of lowering sound horizon is to increase H0.
- What about potentially harmful secondary effects?

- Primary effect of lowering sound horizon is to increase H0.
- What about potentially harmful secondary effects?

Non-relativistic matter:

$$\theta_s^{-1} = \frac{D_a(z_{\text{rec}})}{r_s} \simeq \int_0^{z_{\text{rec}}} dz \frac{1}{r_s H_0} \frac{1}{\sqrt{\Omega_m (1+z)^3 + (1-\Omega_m)}}$$

- Primary effect of lowering sound horizon is to increase H0.
- What about potentially harmful secondary effects?

- Primary effect of lowering sound horizon is to increase H0.
- What about potentially harmful secondary effects?

- Primary effect of lowering sound horizon is to increase H0.
- What about potentially harmful secondary effects?

- Primary effect of lowering sound horizon is to increase H0.
- What about potentially harmful secondary effects?

- Primary effect of lowering sound horizon is to increase H0.
- What about potentially harmful secondary effects?

- Primary effect of lowering sound horizon is to increase H0.
- What about potentially harmful secondary effects?

- Primary effect of lowering sound horizon is to increase H0.
- What about potentially harmful secondary effects?

- Primary effect of lowering sound horizon is to increase H0.
- What about potentially harmful secondary effects?

Secondary effect I - matter density

- Primary effect of lowering sound horizon is to increase H0.
- What about potentially harmful secondary effects?

Such an increase in the physical matter density has consequences:

Secondary effect I – matter density

- Primary effect of lowering sound horizon is to increase H0.
- What about potentially harmful secondary effects?

Such an increase in the physical matter density has consequences:

Secondary effect I – matter density

- Primary effect of lowering sound horizon is to increase H0.
- What about potentially harmful secondary effects?

Non-relativistic matter: BAO (<1%)
$$H_0 \equiv 100\,h\,\mathrm{kmsec^{-1}Mpc^{-1}}$$

$$\theta_s^{-1} = \frac{D_a(z_\mathrm{rec})}{r_s} \simeq \int_0^{z_\mathrm{rec}} \mathrm{d}z \frac{1}{[r_s H_0]} \frac{1}{\sqrt{\Omega_m (1+z)^3 + (1-\Omega_m)}} \quad \text{constrain}_{z_\mathrm{rec} = \mathrm{fixed}} \quad \Omega_m = \frac{\omega_m}{h^2} \propto \omega_m r_s^2$$
 CMB (<0.04%)
$$r_s \downarrow 10\% \quad \longrightarrow \quad \omega_m \uparrow 20\%$$

Such an increase in the physical matter density has consequences:

- Any early-time model needs to come with compensation mechanism, examples:
 - (i) delay matter domination, (ii) dark sector acoustic oscillations, (iii) fuzzy dark matter
- Important lesson: The detailed compensation mechanism requires a specific model!

Secondary effect II - primordial spectrum

Secondary effect II - primordial spectrum

- lacktriangle Increased $\, n_s \,$ to compensate enhanced diffusion damping in CMB
- ◆ Primordial spectrum one-sigma compatible with scale invariance.

Secondary effect II - primordial spectrum

- lacktriangle Increased $\, n_s \,$ to compensate enhanced diffusion damping in CMB
- ◆ Primordial spectrum one-sigma compatible with scale invariance.

- ◆ Could bring back to life simple models of inflation, e.g.:
 - quadratic potential + curvaton
 - power-law inflation (exp. potentials)
- ◆ For now: Keep in mind LCDM dependence of primordial constraints.

Cosmic history:

First model in 2018: AxiEDE – Poulin, Smith, Karwal, Kamionkowski

- First model in 2018: AxiEDE Poulin, Smith, Karwal, Kamionkowski
- Insight with Martin S. Sloth 2019: Looks like a vacuum phase transition!


```
However: \Gamma=const --> tunneling turns on when \Gamma\sim H^4
```


Hubble tension: EDE provided by (decaying) false vacuum energy / latent heat.

Challenge: How to avoid anisotropies in CMB arising from large bubbles?

- Challenge: How to avoid anisotropies in CMB arising from large bubbles?
- ldea: Make tunneling rate time dependent: Two models Cold and Hot NEDE.

 \blacktriangleright Introduce a **trigger field** ϕ to synchronise decay.

- ightharpoonup Introduce a **trigger field** ϕ to synchronise decay.
- eV scale adaption of first-order inflationary model
 [Linde,1990][Adams,Freese,1990]

- ightharpoonup Introduce a **trigger field** ϕ to synchronise decay.
- eV scale adaption of first-order inflationary model
 [Linde,1990][Adams,Freese,1990]

ightharpoonup Introduce a **trigger field** ϕ to synchronise decay.

eV scale adaption of first-order inflationary model
[Linde,1990][Adams,Freese,1990]

```
tunnelling rate: \Gamma(\phi) \propto \exp{[-S_E(\phi)]}
(i) field stuck initially: \phi \simeq \phi_{ini} and \Gamma/H^4 \ll 1
```


lacktriangle Introduce a **trigger field** ϕ to synchronise decay.

eV scale adaption of first-order inflationary model
[Linde, 1990][Adams, Freese, 1990]

tunnelling rate: $\Gamma(\phi) \propto \exp\left[-S_E(\phi)\right]$ (i) field stuck initially: $\phi \simeq \phi_{ini}$ and $\Gamma/H^4 \ll 1$ (ii) ϕ starts evolving eventually: $\Gamma/H^4 \gtrsim 1$ bubble nucleation turns on quick percolation (bubbles remain small)

recent bound: $\beta > 320 H_{*}$ [G.Elor++,2311.16222]

lacktriangle Introduce a **trigger field** ϕ to synchronise decay.

eV scale adaption of first-order inflationary model
[Linde, 1990][Adams, Freese, 1990]

tunnelling rate: $\Gamma(\phi) \propto \exp\left[-S_E(\phi)\right]$ (i) field stuck initially: $\phi \simeq \phi_{ini}$ and $\Gamma/H^4 \ll 1$ (ii) ϕ starts evolving eventually: $\Gamma/H^4 \gtrsim 1$ bubble nucleation turns on quick percolation (bubbles remain small)

recent bound: $\beta > 320 H_*$ [G.Elor++,2311.16222]

lacktriangle Introduce a **trigger field** ϕ to synchronise decay.

eV scale adaption of first-order inflationary model
[Linde,1990][Adams,Freese,1990]

tunnelling rate: $\Gamma(\phi) \propto \exp\left[-S_E(\phi)\right]$ (i) field stuck initially: $\phi \simeq \phi_{ini}$ and $\Gamma/H^4 \ll 1$ (ii) ϕ starts evolving eventually: $\Gamma/H^4 \gtrsim 1$ bubble nucleation turns on quick percolation (bubbles remain small)

recent bound: $eta > 320 H_*$

lacktriangle Introduce a **trigger field** ϕ to synchronise decay.

eV scale adaption of first-order inflationary model
[Linde, 1990][Adams, Freese, 1990]

tunnelling rate: $\Gamma(\phi) \propto \exp\left[-S_E(\phi)\right]$ (i) field stuck initially: $\phi \simeq \phi_{ini}$ and $\Gamma/H^4 \ll 1$ (ii) ϕ starts evolving eventually: $\Gamma/H^4 \gtrsim 1$ bubble nucleation turns on quick percolation (bubbles remain small)

recent bound: $\beta > 320 H_{*}$ [G.Elor++,2311.16222]

 Transition is triggered at different places at different times due to fluctuations in trigger field, seeding perturbations in decaying fluid.

lacktriangle Introduce a **trigger field** ϕ to synchronise decay.

eV scale adaption of first-order inflationary model
[Linde, 1990][Adams, Freese, 1990]

tunnelling rate: $\Gamma(\phi) \propto \exp\left[-S_E(\phi)\right]$ (i) field stuck initially: $\phi \simeq \phi_{ini}$ and $\Gamma/H^4 \ll 1$ (ii) ϕ starts evolving eventually: $\Gamma/H^4 \gtrsim 1$

recent bound: $\beta > 320 H_{*}$ [G.Elor++,2311.16222]

quick percolation (bubbles remain small)

 Transition is triggered at different places at different times due to fluctuations in trigger field, seeding perturbations in decaying fluid.

lacktriangle Introduce a **trigger field** ϕ to synchronise decay.

eV scale adaption of first-order inflationary model [Linde, 1990][Adams, Freese, 1990]

tunnelling rate: $\Gamma(\phi) \propto \exp\left[-S_E(\phi)\right]$ (i) field stuck initially: $\phi \simeq \phi_{ini}$ and $\Gamma/H^4 \ll 1$ (ii) ϕ starts evolving eventually: $\Gamma/H^4 \gtrsim 1$ bubble nucleation turns on quick percolation (bubbles remain small)

recent bound: $\beta > 320 H_{*}$ [G.Elor++,2311.16222]

 Transition is triggered at different places at different times due to fluctuations in trigger field, seeding perturbations in decaying fluid.

lacktriangle Introduce a **trigger field** ϕ to synchronise decay.

eV scale adaption of first-order inflationary model [Linde, 1990][Adams, Freese, 1990]

tunnelling rate: $\Gamma(\phi) \propto \exp\left[-S_E(\phi)\right]$ (i) field stuck initially: $\phi \simeq \phi_{ini}$ and $\Gamma/H^4 \ll 1$ (ii) ϕ starts evolving eventually: $\Gamma/H^4 \gtrsim 1$ bubble nucleation turns on quick percolation (bubbles remain small)

recent bound: $\beta > 320 H_{*}$ [G.Elor++,2311.16222]

- Transition is triggered at different places at different times due to fluctuations in trigger field, seeding perturbations in decaying fluid.
- Presence of trigger tied to microphysical model building.

Cold New Early Dark Energy

lacktriangle Introduce a **trigger field** ϕ to synchronise decay.

eV scale adaption of first-order inflationary model [Linde, 1990][Adams, Freese, 1990]

tunnelling rate: $\Gamma(\phi) \propto \exp\left[-S_E(\phi)\right]$ (i) field stuck initially: $\phi \simeq \phi_{ini}$ and $\Gamma/H^4 \ll 1$ (ii) ϕ starts evolving eventually: $\Gamma/H^4 \gtrsim 1$ bubble nucleation turns on quick percolation (bubbles remain small)

- Transition is triggered at different places at different times due to fluctuations in trigger field, seeding perturbations in decaying fluid.
- Presence of trigger tied to microphysical model building.
- Implementation in Boltzmann solver
 CLASS -> TriggerCLASS

The H_0 Olympics: A fair ranking of proposed models

Schöneberg et al., 2022

Nils Schöneberg, a Guillermo Franco Abellán, b Andrea Pérez Sánchez, a Samuel J. Witte, c Vivian Poulin, b and Julien Lesgourgues a

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{\rm DMAP}$ Tension		$\Delta \chi^2$	$\Delta { m AIC}$		Finalist	
$\Lambda \mathrm{CDM}$	0	-19.416 ± 0.012	$\frac{4.4\sigma}{}$	4.5σ	X	0.00	0.00	X	X	
Majoron	3	-19.380 ± 0.027	3.0σ	2.9σ	\checkmark	-13.74	-7.74	\checkmark	✓ ②	
primordial B	1	-19.390 ± 0.018	3.5σ	3.5σ	X	-10.83	-8.83	\checkmark	√ ③	
varying m_e	1	-19.391 ± 0.034	2.9σ	3.2σ	X	-9.87	-7.87	\checkmark	√ ③	axiEDE
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.7σ	\checkmark	-16.11	-12.11	\checkmark	✓ ●	A
EDE	3	-19.390 ± 0.016	3.6σ	1.6σ	\checkmark	-20.80	-14.80	\checkmark	✓ 2	
NEDE	3	-19.380 ± 0.021	3.2σ	2.0σ	√	-17.70	-11.70	√	√ 2 ←	- NEDE

[Planck 2018 + BAO + Pantheon (+ SH0ES)]

▶ Competition 2022:

EDE-type models reduce tension to ~ 2 sigma.

The H_0 Olympics: A fair ranking of proposed models

Schöneberg et al., 2022

Nils Schöneberg, a Guillermo Franco Abellán, b Andrea Pérez Sánchez, a Samuel J. Witte, c Vivian Poulin, b and Julien Lesgourgues a

Model	$\Delta N_{ m param}$	M_B	Gaussian	Q_{DMAP}		Λv^2	$\Delta { m AIC}$		Finalist	
Wiodol	-1 · param	111111111111111111111111111111111111111	Tension	Tension			_		1 mans	
$\Lambda \mathrm{CDM}$	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X	
Majoron	3	-19.380 ± 0.027	3.0σ	2.9σ	\checkmark	-13.74	-7.74	\checkmark	✓ ②	
primordial B	1	-19.390 ± 0.018	3.5σ	3.5σ	X	-10.83	-8.83	\checkmark	√ ③	
varying m_e	1	-19.391 ± 0.034	2.9σ	3.2σ	X	-9.87	-7.87	\checkmark	√ ⑤	axiEDE
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.7σ	\checkmark	-16.11	-12.11	\checkmark	√ 0 ♠	and the same of th
EDE	3	-19.390 ± 0.016	3.6σ	1.6σ	\checkmark	-20.80	-14.80	\checkmark	✓ ② 🤻	
NEDE	3	-19.380 ± 0.021	3.2σ	2.0σ	√	-17.70	-11.70	√	✓ ② ﴿	NEDE

[Planck 2018 + BAO + Pantheon (+ SH0ES)]

▶ Competition 2022:

EDE-type models reduce tension to ~ 2 sigma.

Strong projection effects at play. e.g. [J. Cruz, S. Hannestad, E. Holm, F. N., M. S. Sloth, T. Tram], also [Herold+ +,2112.12140]

The H_0 Olympics: A fair ranking of proposed models

Schöneberg et al., 2022

Nils Schöneberg, a Guillermo Franco Abellán, b Andrea Pérez Sánchez, a Samuel J. Witte, c Vivian Poulin, b and Julien Lesgourgues a

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{\rm DMAP}$ Tension		$\Delta \chi^2$	$\Delta { m AIC}$		Finalist	
ΛCDM	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X	
Majoron	3	-19.380 ± 0.027	3.0σ	2.9σ	\checkmark	-13.74	-7.74	\checkmark	✓ ②	
primordial B	1	-19.390 ± 0.018	3.5σ	3.5σ	X	-10.83	-8.83	\checkmark	√ ③	
varying m_e	1	-19.391 ± 0.034	2.9σ	3.2σ	X	-9.87	-7.87	\checkmark	√ ③	axiEDE
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.7σ	\checkmark	-16.11	-12.11	\checkmark	√ 0	, Area of the latest and the latest
EDE	3	-19.390 ± 0.016	3.6σ	1.6σ	\checkmark	-20.80	-14.80	\checkmark	✓ ② 🍑	
NEDE	3	-19.380 ± 0.021	3.2σ	2.0σ	\checkmark	-17.70	-11.70	√	✓ ② ◆	- NEDE

[Planck 2018 + BAO + Pantheon (+ SH0ES)]

▶ Competition 2022:

EDE-type models reduce tension to ~ 2 sigma.

Strong projection effects at play. e.g. [J. Cruz, S. Hannestad, E. Holm, F. N., M. S. Sloth, T. Tram], also [Herold+ +,2112.12140]

Update 2024 (with A. Chatrchyan, V. Poulin, and M. S. Sloth)

The H_0 Olympics: A fair ranking of proposed models

Schöneberg et al., 2022

Nils Schöneberg, a Guillermo Franco Abellán, b Andrea Pérez Sánchez, a Samuel J. Witte, c Vivian Poulin, b and Julien Lesgourgues a

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{\rm DMAP}$ Tension		$\Delta \chi^2$	$\Delta { m AIC}$		Finalist	
ΛCDM	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X	
Majoron	3	-19.380 ± 0.027	3.0σ	2.9σ	\checkmark	-13.74	-7.74	\checkmark	√ ②	
primordial B	1	-19.390 ± 0.018	3.5σ	3.5σ	X	-10.83	-8.83	\checkmark	√ ⑤	
varying m_e	1	-19.391 ± 0.034	2.9σ	3.2σ	X	-9.87	-7.87	\checkmark	√ ⑤	axiEDE
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.7σ	\checkmark	-16.11	-12.11	\checkmark	√	- Armer
EDE	3	-19.390 ± 0.016	3.6σ	1.6σ	\checkmark	-20.80	-14.80	\checkmark	✓ ② 🦚	
NEDE	3	-19.380 ± 0.021	3.2σ	2.0σ	√	-17.70	-11.70	✓	✓ 2 ◆	NEDE

[Planck 2018 + BAO + Pantheon (+ SH0ES)]

▶ Competition 2022:

EDE-type models reduce tension to ~ 2 sigma.

Strong projection effects at play. e.g. [J. Cruz, S. Hannestad, E. Holm, F. N., M. S. Sloth, T. Tram], also [Herold+ +,2112.12140]

Update 2024 (with A. Chatrchyan, V. Poulin, and M. S. Sloth)

Change I: (Planck 2018, Pantheon+, DESI BAO DR1)
->tension: ~ 2 sigma

The H_0 Olympics: A fair ranking of proposed models

Schöneberg et al., 2022

Nils Schöneberg, a Guillermo Franco Abellán, b Andrea Pérez Sánchez, a Samuel J. Witte, c Vivian Poulin, b and Julien Lesgourgues a

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{\rm DMAP}$ Tension		$\Delta \chi^2$	$\Delta { m AIC}$		Finalist	
ΛCDM	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X	
Majoron	3	-19.380 ± 0.027	3.0σ	2.9σ	\checkmark	-13.74	-7.74	\checkmark	✓ ②	
primordial B	1	-19.390 ± 0.018	3.5σ	3.5σ	X	-10.83	-8.83	\checkmark	√ ⑤	
varying m_e	1	-19.391 ± 0.034	2.9σ	3.2σ	X	-9.87	-7.87	\checkmark	√ ⑤	axiEDE
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.7σ	\checkmark	-16.11	-12.11	\checkmark	√	ALE TO THE PARTY OF THE PARTY O
EDE	3	-19.390 ± 0.016	3.6σ	1.6σ	\checkmark	-20.80	-14.80	\checkmark	✓ ② 🦓	
NEDE	3	-19.380 ± 0.021	3.2σ	2.0σ	√	-17.70	-11.70	√	✓ 2 ←	NEDE

[Planck 2018 + BAO + Pantheon (+ SH0ES)]

Competition 2022:

EDE-type models reduce tension to ~ 2 sigma.

Strong projection effects at play. e.g. [J. Cruz, S. Hannestad, E. Holm, F. N., M. S. Sloth, T. Tram], also [Herold+ +,2112.12140]

Update 2024 (with A. Chatrchyan, V. Poulin, and M. S. Sloth)

- **Change I:** (Planck 2018, **Pantheon+**, **DESI BAO DR1**)
 - ->tension: ~ 2 sigma
- **Change II:** (Planck NPIPE, Pantheon+, DESI BAO DR1)
 - ->tension: ~2.5 sigma (~3.5 sigma with old BAO)

The H_0 Olympics: A fair ranking of proposed models

Schöneberg et al., 2022

Nils Schöneberg, ^a Guillermo Franco Abellán, ^b Andrea Pérez Sánchez, ^a Samuel J. Witte, ^c Vivian Poulin, ^b and Julien Lesgourgues ^a

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{\rm DMAP}$ Tension		$\Delta \chi^2$	$\Delta { m AIC}$		Finalist	
ΛCDM	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X	
Majoron	3	-19.380 ± 0.027	3.0σ	2.9σ	\checkmark	-13.74	-7.74	\checkmark	√ ②	
primordial B	1	-19.390 ± 0.018	3.5σ	3.5σ	X	-10.83	-8.83	\checkmark	√ ⑤	
varying m_e	1	-19.391 ± 0.034	2.9σ	3.2σ	X	-9.87	-7.87	\checkmark	√ ⑤	axiEDE
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.7σ	\checkmark	-16.11	-12.11	\checkmark	√	- Arrange
EDE	3	-19.390 ± 0.016	3.6σ	1.6σ	\checkmark	-20.80	-14.80	\checkmark	✓ ② 🦚	
NEDE	3	-19.380 ± 0.021	3.2σ	2.0σ	√	-17.70	-11.70	✓	✓ 2 ◆	NEDE

[Planck 2018 + BAO + Pantheon (+ SH0ES)]

▶ Competition 2022:

EDE-type models reduce tension to ~ 2 sigma.

Strong projection effects at play. e.g. [J. Cruz, S. Hannestad, E. Holm, F. N., M. S. Sloth, T. Tram], also [Herold+ +,2112.12140]

Update 2024 (with A. Chatrchyan, V. Poulin, and M. S. Sloth)

- **Change I:** (Planck 2018, **Pantheon+**, **DESI BAO DR1**)
 - ->tension: ~ 2 sigma
- **Change II:** (Planck NPIPE, Pantheon+, DESI BAO DR1)
 - ->tension: ~2.5 sigma (~3.5 sigma with old BAO)
- Model building clue: fluid after phase transition could be a mixture of radiation (w=1/3) and stiff (w=1) fluid.

The H_0 Olympics: A fair ranking of proposed models Nils Schöneberg, Guillermo Franco Abellán, Andrea Pérez Sánchez, Samuel J. Witte, Vivian Poulin, Jand Julien Lesgourgues

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{\rm DMAP}$ Tension		$\Delta \chi^2$	$\Delta { m AIC}$		Finalist	
$\Lambda \mathrm{CDM}$	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X	
Majoron	3	-19.380 ± 0.027	3.0σ	2.9σ	\checkmark	-13.74	-7.74	\checkmark	✓ ②	
primordial B	1	-19.390 ± 0.018	3.5σ	3.5σ	X	-10.83	-8.83	\checkmark	√ ③	
varying m_e	1	-19.391 ± 0.034	2.9σ	3.2σ	X	-9.87	-7.87	\checkmark	√ ③	axiEDE
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.7σ	\checkmark	-16.11	-12.11	\checkmark	√ 0 ∧	
EDE	3	-19.390 ± 0.016	3.6σ	1.6σ	\checkmark	-20.80	-14.80	\checkmark	✓ ② 🍇	
NEDE	3	-19.380 ± 0.021	3.2σ	2.0σ	√	-17.70	-11.70	√	√ 2 ←	- NEDE

[Planck 2018 + BAO + Pantheon (+ SH0ES)]

Schöneberg et al., 2022

▶ Competition 2022:

EDE-type models reduce tension to ~ 2 sigma.

Strong projection effects at play. e.g. [J. Cruz, S. Hannestad, E. Holm, F. N., M. S. Sloth, T. Tram], also [Herold+ +,2112.12140]

Update 2024 (with A. Chatrchyan, V. Poulin, and M. S. Sloth)

- **Change I:** (Planck 2018, **Pantheon+**, **DESI BAO DR1**)
 - ->tension: ~ 2 sigma
- **Change II:** (Planck NPIPE, Pantheon+, DESI BAO DR1)
 - ->tension: ~2.5 sigma (~3.5 sigma with old BAO)
- ▶ Model building clue: fluid after phase transition could be a mixture of radiation (w=1/3) and stiff (w=1) fluid.
- Upshot: Cold NEDE remains competitive model.

The H_0 Olympics: A fair ranking of proposed models

Nils Schöneberg, a Guillermo Franco Abellán, h Andrea Pérez

Sánchez,^a Samuel J. Witte,^c Vivian Poulin,^b and Julien Lesgourgues^a

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{\rm DMAP}$ Tension		$\Delta \chi^2$	$\Delta { m AIC}$		Finalist	
$\Lambda \mathrm{CDM}$	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X	
Majoron	3	-19.380 ± 0.027	3.0σ	2.9σ	\checkmark	-13.74	-7.74	\checkmark	√ ②	
primordial B	1	-19.390 ± 0.018	3.5σ	3.5σ	X	-10.83	-8.83	\checkmark	√ ⑤	
varying m_e	1	-19.391 ± 0.034	2.9σ	3.2σ	X	-9.87	-7.87	\checkmark	√ ⑤	axiEDE
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.7σ	\checkmark	-16.11	-12.11	\checkmark	√ 0 a .	
EDE	3	-19.390 ± 0.016	3.6σ	1.6σ	\checkmark	-20.80	-14.80	\checkmark	✓ ② 🦚	
NEDE	3	-19.380 ± 0.021	3.2σ	2.0σ	√	-17.70	-11.70	√	✓ ② ←	- NEDE

[Planck 2018 + BAO + Pantheon (+ SH0ES)]

Schöneberg et al., 2022

▶ Competition 2022:

EDE-type models reduce tension to ~ 2 sigma.

Strong projection effects at play. e.g. [J. Cruz, S. Hannestad, E. Holm, F. N., M. S. Sloth, T. Tram], also [Herold+ +,2112.12140

(with A. Chatrchyan, V. Poulin, Update 2024 and M. S. Sloth)

- Change I: (Planck 2018, Pantheon+, DESI BAO DR1)
 - ->tension: ~ 2 sigma
- Change II: (Planck NPIPE, Pantheon+, DESI BAO DR1)
 - ->tension: ~2.5 sigma (~3.5 sigma with old BAO)
- Model building clue: fluid after phase transition could be a mixture of radiation (w=1/3) and stiff (w=1) fluid.
- Upshot: Cold NEDE remains competitive model.
- Outlook: more theoretical (origin of w=1) and phenomenological (new ACT data) work required!

Minimal modification.

Minimal modification.

Convenient parametrisation: $\Delta N_{
m eff}=
ho_{
m DR}/
ho_{1,
u}$ \rightarrow additional neutrinos"

Minimal modification.

Convenient parametrisation:
$$\Delta N_{
m eff}=
ho_{
m DR}/
ho_{1,
u}$$
 "additional neutrinos" Dark sector temperature: $T_d^4/T_{
m vis}^4=g_{
m rel,d}^{-1}\,rac{7}{4}\left(rac{4}{11}
ight)^{4/3}\Delta N_{
m eff}$

Minimal modification.

Convenient parametrisation:
$$\Delta N_{
m eff}=
ho_{
m DR}/
ho_{1,
u}$$
 "additional neutrinos" Dark sector temperature: $T_d^4/T_{
m vis}^4=g_{
m rel,d}^{-1}\,rac{7}{4}\left(rac{4}{11}
ight)^{4/3}\Delta N_{
m eff}$

▶ Free streaming DR: Too constrained by phase shift induced in CMB power spectrum. [Aloni++,2111.00014]

$$\phi_{\rm FS} \approx 0.6 \frac{N_{\rm eff,\nu} + \Delta N_{\rm eff}}{4.4 + N_{\rm eff,\nu} + \Delta N_{\rm eff}}$$

Minimal modification.

Convenient parametrisation:
$$\Delta N_{
m eff}=
ho_{
m DR}/
ho_{1,
u}$$
 * additional neutrinos" Dark sector temperature: $T_d^4/T_{
m vis}^4=g_{
m rel,d}^{-1}\,rac{7}{4}\left(rac{4}{11}
ight)^{4/3}\Delta N_{
m eff}$

- ▶ Free streaming DR: Too constrained by phase shift induced in CMB power spectrum. [Aloni++,2111.00014]
- Strongly self-interacting DR (SIDR) more promising.

$$\Gamma\gg H$$
 \longrightarrow (i) no free-streaming (ii) SIDR acts as perturbed fluid Example: massless gauge bosons of dark SU(N)

$$\phi_{\rm FS} \approx 0.6 \frac{N_{\rm eff,\nu} + \Delta N_{\rm eff}}{4.4 + N_{\rm eff,\nu} + \Delta N_{\rm eff}}$$

Minimal modification.

Convenient parametrisation:
$$\Delta N_{
m eff}=
ho_{
m DR}/
ho_{1,
u}$$
 ~ "additional neutrinos" Dark sector temperature: $T_d^4/T_{
m vis}^4=g_{
m rel,d}^{-1}\,rac{7}{4}\left(rac{4}{11}
ight)^{4/3}\Delta N_{
m eff}$

- ▶ Free streaming DR: Too constrained by phase shift induced in CMB power spectrum. [Aloni++,2111.00014]
- Strongly self-interacting DR (SIDR) more promising.

$$\Gamma\gg H$$
 (i) no free-streaming (ii) SIDR acts as perturbed fluid Example: massless gauge bosons of dark SU(N)

▶ Different sophistications: stepped SIDR (mass threshold), coupled DM-DR, ... e.g. [Aloni++,2207.03500]

$$\phi_{\rm FS} \approx 0.6 \frac{N_{\rm eff,\nu} + \Delta N_{\rm eff}}{4.4 + N_{\rm eff,\nu} + \Delta N_{\rm eff}}$$

Minimal modification.

Convenient parametrisation:
$$\Delta N_{
m eff}=
ho_{
m DR}/
ho_{1,
u}$$
 * additional neutrinos" Dark sector temperature: $T_d^4/T_{
m vis}^4=g_{
m rel,d}^{-1}\,rac{7}{4}\left(rac{4}{11}
ight)^{4/3}\Delta N_{
m eff}$

- ▶ Free streaming DR: Too constrained by phase shift induced in CMB power spectrum. [Aloni++,2111.00014]
- Strongly self-interacting DR (SIDR) more promising.

$$\Gamma\gg H$$
 (i) no free-streaming (ii) SIDR acts as perturbed fluid Example: massless gauge bosons of dark SU(N)

- ▶ Different sophistications: stepped SIDR (mass threshold), coupled DM-DR, ... e.g. [Aloni++,2207.03500]
- Depending on detailed model: brings tension to ~3 sigma level. [2306.12469, 2305.14166]

$$\phi_{\rm FS} \approx 0.6 \frac{N_{\rm eff,\nu} + \Delta N_{\rm eff}}{4.4 + N_{\rm eff,\nu} + \Delta N_{\rm eff}}$$

Minimal modification.

Convenient parametrisation:
$$\Delta N_{
m eff}=
ho_{
m DR}/
ho_{1,
u}$$
 * additional neutrinos" Dark sector temperature: $T_d^4/T_{
m vis}^4=g_{
m rel,d}^{-1}\,rac{7}{4}\left(rac{4}{11}
ight)^{4/3}\Delta N_{
m eff}$

- ▶ Free streaming DR: Too constrained by phase shift induced in CMB power spectrum. [Aloni++,2111.00014]
- Strongly self-interacting DR (SIDR) more promising.

$$\Gamma\gg H$$
 (i) no free-streaming (ii) SIDR acts as perturbed fluid Example: massless gauge bosons of dark SU(N)

- ▶ Different sophistications: stepped SIDR (mass threshold), coupled DM-DR, ... e.g. [Aloni++,2207.03500]
- ▶ Depending on detailed model: brings tension to ~3 sigma level. [2306.12469, 2305.14166]
- ▶ Challenge: Resolution of Hubble tension incompatible with
 BBN
 e.g. [Schöneberg++,2206.11276]

$$\phi_{\rm FS} \approx 0.6 \frac{N_{\rm eff,\nu} + \Delta N_{\rm eff}}{4.4 + N_{\rm eff,\nu} + \Delta N_{\rm eff}}$$

(with M.Garny, H.Rubira, M.S.Sloth)

- Supercooled phase transition with quick re-heating of dark sector allows avoidance of BBN constraint.
- Simple microscopic model: SU(N) -> SU(N-1) through radiative symmetry breaking a la Coleman-Weinberg.
- ▶ Redshift range:

 $z_{\rm rec} < z_* < 10^9$

(with M.Garny, H.Rubira, M.S.Sloth)

▶ Central simplifying assumptions:

(i)
$$p(t) \propto \exp\left(\beta(t-t_*)\right)$$
 with $\beta\gg H_*=1/(2\,t_*)$ tubbles remain small (ii) "instantaneous" reheating

- Supercooled phase transition with quick re-heating of dark sector allows avoidance of BBN constraint.
- Simple microscopic model: SU(N) -> SU(N-1) through radiative symmetry breaking a la Coleman-Weinberg.
- Redshift range:

$$z_{\rm rec} < z_* < 10^9$$

The phase transition affects scalar perturbations in three ways:

recent bound: $\beta > 320 H_{*}$ [G.Elor++,2311.16222]

The phase transition affects scalar perturbations in three ways:

1. Bubbles of true vacuum generate perturbations on scales comparable to their size:

irrelevant if bubbles remain small

- The phase transition affects scalar perturbations in three ways:
 - 1. Bubbles of true vacuum generate perturbations on scales comparable to their size:
 - irrelevant if bubbles remain small
 - 2. Adiabatic fluctuations in dark sector temperature seed perturbations in post-p.t. fluid.
 - relevant for CMB + LSS

- The phase transition affects scalar perturbations in three ways:
 - 1. Bubbles of true vacuum generate perturbations on scales comparable to their size:
 - irrelevant if bubbles remain small
 - 2. Adiabatic fluctuations in dark sector temperature seed perturbations in post-p.t. fluid.
 - relevant for CMB + LSS
- Covariant perturbation matching implemented in CLASS solver.

- The phase transition affects scalar perturbations in three ways:
 - 1. Bubbles of true vacuum generate perturbations on scales comparable to their size:
 - irrelevant if bubbles remain small
 - 2. Adiabatic fluctuations in dark sector temperature seed perturbations in post-p.t. fluid.
 - relevant for CMB + LSS
- Covariant perturbation matching implemented in CLASS solver.
- First results (triggered stepped SIDR):

- The phase transition affects scalar perturbations in three ways:
 - 1. Bubbles of true vacuum generate perturbations on scales comparable to their size:
 - irrelevant if bubbles remain small
 - 2. Adiabatic fluctuations in dark sector temperature seed perturbations in post-p.t. fluid.
 - relevant for CMB + LSS
- Covariant perturbation matching implemented in CLASS solver.
- First results (triggered stepped SIDR):
 - ◆ Phase transition happens pre-CMB

- The phase transition affects scalar perturbations in three ways:
 - 1. Bubbles of true vacuum generate perturbations on scales comparable to their size:
 - irrelevant if bubbles remain small
 - 2. Adiabatic fluctuations in dark sector temperature seed perturbations in post-p.t. fluid.
 - relevant for CMB + LSS
- Covariant perturbation matching implemented in CLASS solver.
- First results (triggered stepped SIDR):
 - ◆ Phase transition happens pre-CMB
 - ◆ Residual tension: 2.8 sigma [M.Garny++,2404.07256]

- recent bound: $\beta > 320 H_{*}$ [G.Elor++,2311.16222]
- The phase transition affects scalar perturbations in three ways:
 - 1. Bubbles of true vacuum generate perturbations on scales comparable to their size:
 - irrelevant if bubbles remain small
 - 2. Adiabatic fluctuations in dark sector temperature seed perturbations in post-p.t. fluid.
 - relevant for CMB + LSS
- Covariant perturbation matching implemented in CLASS solver.
- First results (triggered stepped SIDR):
 - ◆ Phase transition happens pre-CMB
 - ◆ Residual tension: 2.8 sigma
 [M.Garny++,2404.07256]

▶ Why bother with 3-sigma-residual-tension model? It provides well-motivated theoretical playground for testing more complete dark sector physics.

- The phase transition affects scalar perturbations in three ways:
 - 1. Bubbles of true vacuum generate perturbations on scales comparable to their size:
 - irrelevant if bubbles remain small
 - 2. Adiabatic fluctuations in dark sector temperature seed perturbations in post-p.t. fluid.
 - relevant for CMB + LSS
- Covariant perturbation matching implemented in CLASS solver.
- First results (triggered stepped SIDR):
 - ◆ Phase transition happens pre-CMB
 - ◆ Residual tension: 2.8 sigma [M.Garny++,2404.07256]

- ▶ Why bother with 3-sigma-residual-tension model? It provides well-motivated theoretical playground for testing more complete dark sector physics.
- Work in progress [...] Stay tuned!

- Stochastic gravitational wave background
 - ◆ Overlap with PTAs for phase transitions that occur close to BBN and create large bubbles.

$$10^7 < z_* < 10^9$$

◆ First estimate (envelope approximation, thin-wall, ...)

- Stochastic gravitational wave background
 - Overlap with PTAs for phase transitions that occur close to BBN and create large bubbles.

$$10^7 < z_* < 10^9$$

◆ First estimate (envelope approximation, thin-wall, ...)

Acoustic oscillations in DR fluid

- ◆ Consequence of perturbation matching.
- ◆ Imprinted in matter power spectrum.
- ◆ Relevant if p.t. occurs sufficiently late:

$$10^5 < z_* < 10^6$$

- Stochastic gravitational wave background
 - Overlap with PTAs for phase transitions that occur close to BBN and create large bubbles.

$$10^7 < z_* < 10^9$$

◆ First estimate (envelope approximation, thin-wall, ...)

Acoustic oscillations in DR fluid

- ◆ Consequence of perturbation matching.
- ◆ Imprinted in matter power spectrum.
- ◆ Relevant if p.t. occurs sufficiently late:

$$10^5 < z_* < 10^6$$

CMB anisotropies

- ◆ CMB provides lower bound on redshift
- ◆ Difference with cold NEDE due to character of trigger field.
- ◆ Acoustic oscillations in post p.t. fluid stronger in Hot NEDE.

Summary

- The **Hubble tension** calls for new physics operative during the CMB epoch.
- Deportunity to probe new fundamental physics above (but close to) the eV scale!
- A strong first-order phase transition offers a simple microscopic scenario.
- ▶ Cold New Early Dark Energy relies on a triggered vacuum phase transition to bring the tension down to 2 sigma (challenges: describe post p.t. fluid, keep testing against new data).
- Hot New Early Dark Energy relies on a supercooled p.t. to produce DR after BBN.
- Simplest model: Brings tension below 3 sigma... having microscopic scenario.
- ... with unique signatures in matter power spectrum (+ PTAs).
- Take home:
 - Exciting times in cosmology as constraining power of cosmological probes is increasing.
 - Phase transitions are a simple playground for (early) dark energy / dark radiation physics.
 - Time to go beyond model-independent parametrizations and use both theory and data constraints.
 - Invitation: Many ideas wait to be explored!

Hot New Early Dark Energy

▶ Dark non-Abelian Higgs model with radiative breaking of conformal symmetry à la Coleman-Weinberg (CW)

$$V(\psi;T_d)=V_0+B\psi^4\left(\ln\frac{\psi^2}{v^2}-\frac{1}{2}\right)-\frac{\mu_{\rm eff}^2}{2}\psi^2\left(1-\frac{\psi^2}{2v^2}\right)+\Delta V_{\rm thermal}(\psi;T_d)\;,\qquad \psi=\sqrt{2}|\Psi|$$
 CW 1-loop result radiative symmetry breaking due to dim. transmutation
$$V'(0)=V''(0)=0$$
 nucleation inhibited for $T_d>T_d^*|_{\rm CW}(\ll v)$ supercooling supercooling conformal symmetry for $T_d\gg T_d^*|_{\rm CW}$ controlled supercooling
$$\frac{N_{\rm eff}^{\rm after}-N_{\rm eff}^{\rm before}}{N_{\rm eff}^{\rm before}}\propto 1/\mu_{\rm eff}^4$$
 controls energy injection

(i)
$$\beta/H_* \propto g^{-2}$$

(ii)
$$\psi$$

efficient decay in massless gauge bosons

$$\frac{\Gamma_{\psi \to AA}^{(\text{cm})}}{H_*} = \mathcal{O}(1) \times \frac{g^9 f_{\text{NEDE}}^{1/4}}{1 + z_*} 10^{24}$$

viable window \longrightarrow $0.1 \gtrsim g \gtrsim 0.01$