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2 EDE: Provides sharp injection before matter-radiation equality — Cold NEDE.

2 DR: Provides continuous injection before matter-radiation equality — Hot NEDE.
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In addition: more matter clumping S 8T

Z Any early-time model needs to come with compensation mechanism, examples:
(i) delay matter domination, (ii) dark sector acoustic oscillations, (iii) fuzzy dark matter

2 Important lesson: The detailed compensation mechanism requires a specific model!
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Secondary effect Il - primordial spectrum

® Could bring back to life simple models of
inflation, e.q.:
e quadratic potential + curvaton
e power-law inflation (exp. potentials)
® For now: Keep in mind LCDM dependence

of primordial constraints.
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2 First model in 2018: AXiEDE - Poulin, Smith, Karwal, Kamionkowski

2 Insight with Martin S. Sloth 2019: Looks like a vacuum phase transition!
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single field case
V() rate

\ btunnelling T = const

However:

I' = const P tunneling turis on when I' ~ H 4

() percolation time
(it) typical bubble size

2 Challenge: How to avoid anisotropies in CMB arising from large bubbles?

2 |dea: Make tunneling rate time dependent: Two models Cold and Hot NEDE.
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e Implementation in Boltzmann solver
CLASS -> TriggerCLASS
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The H; Olympics: A fair ranking of Schoneberg et al., 2022 e titi 2022:
proposed models ompetton -
Nils Schéneberg,” Guillermo Franco Abelldn,” Andrea Pérez E D E_type m Od e I S re d u Ce te n S I O n
Sanchez,* Samuel J. Witte,® Vivian Poulin,’ and Julien
Lesgourgues” .
Model AN, M Gaussian — Qpaap Ax?  AAIC Finalist to~ 2l gma.
ode e B Tension  Tension X tnats
ACDM 0 —19.416 4 0.012 4.40 4.50 X 0.00 0.00 X X
Majoron 3 —19.380 £ 0.027 3.00 2.90 v | —13.74 =774 v v
primordial B 1 —19.390 £ 0.018 3.50 3.50 X | —10.83 —883 V v @
varying me 1 —19.391 £ 0.034 2.90 3.20 X | —-987 787 Vv v @
varying me—+€Q 2 —19.368 £+ 0.048 2.00 1.70 v | —16.11 —-12.11 v (
EDE 3 —19.390 £ 0.016 3.60 1.60 v | —20.80 —14.80 v
NEDE 3 —19.380 + 0.021 3.20 200 v | =17.70 —-11.70 v v Q—»-- NE DE
[Planck 2018 + BAO + Pantheon (+ SHOES)]
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The H; Olympics: A fair ranking of
proposed models

Nils Schéneberg,” Guillermo Franco Abelldn,” Andrea Pérez
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Gaussian

QDMAP

Schoneberg et al., 2022

2z Competition 2022:
EDE-type models reduce tension

to ~ 2 sigma.
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ACDM 0 —19.416 +0.012 4.40 4.50 X 0.00 0.00 X X
Majoron 3 —19.380 £ 0.027 3.00 2.90 v | —13.74 —7.74 v v
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NEDE 3 —19.380 £ 0.021  3.20 200 v | —17.70 -11.70 VO dpme NEDE + 2112 12’140] ’
[Planck 2018 + BAO + Pantheon (+ SHOES)]
Update 2024 (with A. Chatrchyan, V. Poulin, S
P and M. S. Sloth) . Profile likelihood curves
, o NeDE no SHOES prior! |
»? Change I: (Planck 2018, Pantheon+, DESI BAO DR1) | cold NEDE (Plik/Planck 2018 — CamSpec/NPIPE | &
->tension; ~ 2 sigma ° : ?
2z Change llI: (Planck NPIPE, Pantheon+, DESI BAO DR1)
->tension: ~2.5 sigma (~3.5 sigma with old BAO) ®]
» Model building clue: fluid after phase transition could 5
be a mixture of radiation (w=1/3) and stiff (w=1) fluid. 4
2z Upshot: Cold NEDE remains competitive model.
» Outlook: more theoretical (origin of w=1) and 21
phenomenological (new ACT data) work required!
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2 Strongly self-interacting DR (SIDR) more promising.

F = H et (L) WO ﬂfree-s&reo\miwa
(it) SIDR acts as perturbed fluid

Example: massless gauge bosons of dark SUN)

2 Different sophistications: stepped SIDR (mass threshold),
coupled DM-DR, ... e.g. [Aloni++,2207.03500]

2 Depending on detailed model: brings tension to
~3 sigma level. [2306.12469, 2305.14166]

2 Challenge: Resolution of Hubble tension incompatible with
BBN e.g. [Schoneberg++,2206.11276]
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req. for solving
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supercooling

2 Central simplifying assumptions:
@ p(t) o< exp (B(t —t.)) with

(iL) “instantaneous” reheating

B He— 0

: >

77 .
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CMB epock

2 Supercooled phase transition with

(iid)
phase tramnsition quick re-heating of dark sector
allows avoidance of BBN constraint.
2 Simple microscopic model:
SU(N) -> SU(N-1) through radiative

symmetry breaking a la Coleman-

Weinberg.
2 Redshift range:

> 0

bubbles remain small
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1. Bubbles of true vacuum generate perturbations on scales comparable to their size:
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2. Adiabatic fluctuations inidark sector temperatureiseed perturbationsiin post-p.t. fluid.

; cosmological model
2z Covariant perturbation matching
implemented in CLASS solver. # dark radiation fluid
2 First results (triggered stepped SIDR): 1 ”‘*’W\/\f’w\,ﬁf\/
¢ Phase transition happens pre-CMB Ta(ts, x)|x = const

early dark energy

¢ Residual tension: 2.8 sigma
[M.Garny++,2404.07256]

2 Why bother with 3-sigma-residual-tension model? It provides well-motivated
theoretical playground for testing more complete dark sector physics.

2 Work in progress [...] Stay tuned!
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Summary

> The Hubble tension calls for new physics operative during the CMB epoch.

2> Opportunity to probe new fundamental physics above (but close to) the eV scale!

2 A strong first-order phase transition offers a simple microscopic scenario.

> Cold New Early Dark Energy relies on a triggered vacuum phase transition to bring the
tension down to 2 sigma (challenges: describe post p.t. fluid, keep testing against new data).

> Hot New Early Dark Energy relies on a supercooled p.t. to produce DR after BBN.

Now: Exploit benefits of

> Simplest model: Brings tension below 3 sigma... . . . .
having microscopic scenario.

2 ... with unique signatures in matter power spectrum (+ PTAS).
2> Take home:

e Exciting times in cosmology as constraining power of cosmological probes is increasing.
e Phase transitions are a simple playground for (early) dark energy / dark radiation physics.
e Time to go beyond model-independent parametrizations and use both theory and data constraints.

e Invitation: Many ideas wait to be explored!
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