The Hubble Tension as the Signature of a New Phase Transition #### Florian Niedermann Nordita in collaboration with: Martin S. Sloth (Universe-Origins, SDU) and Aleksandr Chatrchyan, Mathias Garny, Vivian Poulin, Henrique Rubira and based on earlier work with: Juan Cruz, Steen Hannestad, Emil Holm, Thomas Tram. CosmoVerse @Istanbul 2025 24–26 June 2025 A post-BBN phase transition is highly constrained scenario for new dark sector physics. - A post-BBN phase transition is highly constrained scenario for new dark sector physics. - lt can be realized in terms of simple microphysics. - A post-BBN phase transition is highly constrained scenario for new dark sector physics. - lt can be realized in terms of simple microphysics. - Provides theoretically consistent approach to address the **Hubble tension**. - A post-BBN phase transition is highly constrained scenario for new dark sector physics. - It can be realized in terms of simple microphysics. - Provides theoretically consistent approach to address the Hubble tension. - ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find — we only got started! - A post-BBN phase transition is highly constrained scenario for new dark sector physics. - It can be realized in terms of simple microphysics. - Provides theoretically consistent approach to address the Hubble tension. - ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find — we only got started! ## New physics but how? - A post-BBN phase transition is highly constrained scenario for new dark sector physics. - It can be realized in terms of simple microphysics. - Provides theoretically consistent approach to address the Hubble tension. - ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find — we only got started! # New physics but how? - A post-BBN phase transition is highly constrained scenario for new dark sector physics. - It can be realized in terms of simple microphysics. - Provides theoretically consistent approach to address the **Hubble tension**. - ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find — we only got started! ## New physics but how? **BAO** and Supernovae: - A post-BBN phase transition is highly constrained scenario for new dark sector physics. - It can be realized in terms of simple microphysics. - Provides theoretically consistent approach to address the **Hubble tension**. - ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find — we only got started! # New physics but how? **BAO** and Supernovae: - A post-BBN phase transition is highly constrained scenario for new dark sector physics. - It can be realized in terms of simple microphysics. - Provides theoretically consistent approach to address the Hubble tension. - ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find we only got started! # New physics but how? **BAO** and Supernovae: $$H_0 r_s \simeq const$$ $ightharpoonup model-independent$ - A post-BBN phase transition is highly constrained scenario for new dark sector physics. - It can be realized in terms of simple microphysics. - Provides theoretically consistent approach to address the **Hubble tension**. - ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find — we only got started! # New physics but how? **BAO** and Supernovae: $$H_0 r_s \simeq const$$ \blacksquare model-independent - A post-BBN phase transition is highly constrained scenario for new dark sector physics. - It can be realized in terms of simple microphysics. - Provides theoretically consistent approach to address the **Hubble tension**. - ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find — we only got started! # New physics but how? **BAO** and Supernovae: $$H_0 r_s \simeq const$$ $ightharpoonup model-independent$ - A post-BBN phase transition is highly constrained scenario for new dark sector physics. - lt can be realized in terms of simple microphysics. - Provides theoretically consistent approach to address the Hubble tension. - ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find we only got started! # New physics but how? **BAO** and Supernovae: $$H_0 r_s \simeq const$$ \blacksquare model-independent - A post-BBN phase transition is highly constrained scenario for new dark sector physics. - It can be realized in terms of simple microphysics. - Provides theoretically consistent approach to address the **Hubble tension**. - ▶ Often echoed sentiment: Since there is no compelling/simple solution, the Hubble tension cannot be real. But: No one said that solution would be trivial to find — we only got started! ## New physics but how? BAO and Supernovae: $$H_0 r_s \simeq const$$ $ightharpoonup model-independent$ $$r_s = \int_{z_*}^{\infty} \frac{c_s(z)}{H(z)}$$ increases $H(z)$ prior to recombination $$r_s = \int_{z_*}^{\infty} \frac{c_s(z)}{H(z)}$$ increases $H(z)$ prior to recombination $$H^2(z) = \frac{1}{3M_{\rm pl}^2} \left[\rho_{\Lambda} + \rho_{\rm matter}(z) + \rho_r(z) + \left[\rho_X(z) \right] \right]$$ new component (>10%) ldea: Energy injection before recombination. $$r_s=\int_{z_*}^{\infty} \frac{c_s(z)}{H(z)}$$ increases $H(z)$ prior to recombination $$H^2(z)=\frac{1}{3M_{\rm pl}^2}\left[\rho_{\Lambda}+\rho_{\rm matter}(z)+\rho_r(z)+\rho_X(z)\right]$$ new component (>10%) - Idea: Energy injection before recombination. - This suggests new physics pre recombination in redshift window: 1100 < z < 25000 Modify history of universe when highly constrained! $$r_s = \int_{z_*}^{\infty} \frac{c_s(z)}{H(z)}$$ increases $H(z)$ prior to recombination $$H^2(z) = \frac{1}{3M_{\rm pl}^2} \left[\rho_{\Lambda} + \rho_{\rm matter}(z) + \rho_r(z) + \rho_X(z) \right]$$ new component (>10%) - Idea: Energy injection before recombination. - This suggests new physics pre recombination in redshift window: 1100 < z < 25000 Modify history of universe when highly constrained! $$r_s = \int_{z_*}^{\infty} \frac{c_s(z)}{H(z)}$$ increases $H(z)$ prior to recombination $$H^2(z) = \frac{1}{3M_{\rm pl}^2} \left[\rho_{\Lambda} + \rho_{\rm matter}(z) + \rho_r(z) + \rho_X(z) \right]$$ new component (>10%) - Idea: Energy injection before recombination. - This suggests new physics pre recombination in redshift window: 1100 < z < 25000 #### Modify history of universe when highly constrained! **EDE:** Provides **sharp** injection before matter-radiation equality — Cold NEDE. $$r_s=\int_{z_*}^\infty rac{c_s(z)}{H(z)}$$ increases $H(z)$ prior to recombination $$H^2(z)= rac{1}{3M_{ m pl}^2}\left[ho_\Lambda+ ho_{ m matter}(z)+ ho_r(z)+\left[ho_X(z) ight]$$ new component (>10%) - ldea: Energy injection before recombination. - This suggests new physics pre recombination in redshift window: 1100 < z < 25000 #### Modify history of universe when highly constrained! - **EDE:** Provides **sharp** injection before matter-radiation equality Cold NEDE. - **DR:** Provides **continuous** injection before matter-radiation equality Hot NEDE. - Primary effect of lowering sound horizon is to increase H0. - What about potentially harmful secondary effects? - Primary effect of lowering sound horizon is to increase H0. - What about potentially harmful secondary effects? - Primary effect of lowering sound horizon is to increase H0. - What about potentially harmful secondary effects? #### Non-relativistic matter: $$\theta_s^{-1} = \frac{D_a(z_{\text{rec}})}{r_s} \simeq \int_0^{z_{\text{rec}}} dz \frac{1}{r_s H_0} \frac{1}{\sqrt{\Omega_m (1+z)^3 + (1-\Omega_m)}}$$ - Primary effect of lowering sound horizon is to increase H0. - What about potentially harmful secondary effects? - Primary effect of lowering sound horizon is to increase H0. - What about potentially harmful secondary effects? - Primary effect of lowering sound horizon is to increase H0. - What about potentially harmful secondary effects? - Primary effect of lowering sound horizon is to increase H0. - What about potentially harmful secondary effects? - Primary effect of lowering sound horizon is to increase H0. - What about potentially harmful secondary effects? - Primary effect of lowering sound horizon is to increase H0. - What about potentially harmful secondary effects? - Primary effect of lowering sound horizon is to increase H0. - What about potentially harmful secondary effects? - Primary effect of lowering sound horizon is to increase H0. - What about potentially harmful secondary effects? ### Secondary effect I - matter density - Primary effect of lowering sound horizon is to increase H0. - What about potentially harmful secondary effects? Such an increase in the physical matter density has consequences: # Secondary effect I – matter density - Primary effect of lowering sound horizon is to increase H0. - What about potentially harmful secondary effects? Such an increase in the physical matter density has consequences: ## Secondary effect I – matter density - Primary effect of lowering sound horizon is to increase H0. - What about potentially harmful secondary effects? Non-relativistic matter: BAO (<1%) $$H_0 \equiv 100\,h\,\mathrm{kmsec^{-1}Mpc^{-1}}$$ $$\theta_s^{-1} = \frac{D_a(z_\mathrm{rec})}{r_s} \simeq
\int_0^{z_\mathrm{rec}} \mathrm{d}z \frac{1}{[r_s H_0]} \frac{1}{\sqrt{\Omega_m (1+z)^3 + (1-\Omega_m)}} \quad \text{constrain}_{z_\mathrm{rec} = \mathrm{fixed}} \quad \Omega_m = \frac{\omega_m}{h^2} \propto \omega_m r_s^2$$ CMB (<0.04%) $$r_s \downarrow 10\% \quad \longrightarrow \quad \omega_m \uparrow 20\%$$ Such an increase in the physical matter density has consequences: - Any early-time model needs to come with compensation mechanism, examples: - (i) delay matter domination, (ii) dark sector acoustic oscillations, (iii) fuzzy dark matter - Important lesson: The detailed compensation mechanism requires a specific model! Secondary effect II - primordial spectrum # Secondary effect II - primordial spectrum - lacktriangle Increased $\, n_s \,$ to compensate enhanced diffusion damping in CMB - ◆ Primordial spectrum one-sigma compatible with scale invariance. # Secondary effect II - primordial spectrum - lacktriangle Increased $\, n_s \,$ to compensate enhanced diffusion damping in CMB - ◆ Primordial spectrum one-sigma compatible with scale invariance. - ◆ Could bring back to life simple models of inflation, e.g.: - quadratic potential + curvaton - power-law inflation (exp. potentials) - ◆ For now: Keep in mind LCDM dependence of primordial constraints. Cosmic history: First model in 2018: AxiEDE – Poulin, Smith, Karwal, Kamionkowski - First model in 2018: AxiEDE Poulin, Smith, Karwal, Kamionkowski - Insight with Martin S. Sloth 2019: Looks like a vacuum phase transition! ``` However: \Gamma=const --> tunneling turns on when \Gamma\sim H^4 ``` Hubble tension: EDE provided by (decaying) false vacuum energy / latent heat. Challenge: How to avoid anisotropies in CMB arising from large bubbles? - Challenge: How to avoid anisotropies in CMB arising from large bubbles? - ldea: Make tunneling rate time dependent: Two models Cold and Hot NEDE. \blacktriangleright Introduce a **trigger field** ϕ to synchronise decay. - ightharpoonup Introduce a **trigger field** ϕ to synchronise decay. - eV scale adaption of first-order inflationary model [Linde,1990][Adams,Freese,1990] - ightharpoonup Introduce a **trigger field** ϕ to synchronise decay. - eV scale adaption of first-order inflationary model [Linde,1990][Adams,Freese,1990] ightharpoonup Introduce a **trigger field** ϕ to synchronise decay. eV scale adaption of first-order inflationary model [Linde,1990][Adams,Freese,1990] ``` tunnelling rate: \Gamma(\phi) \propto \exp{[-S_E(\phi)]} (i) field stuck initially: \phi \simeq \phi_{ini} and \Gamma/H^4 \ll 1 ``` lacktriangle Introduce a **trigger field** ϕ to synchronise decay. eV scale adaption of first-order inflationary model [Linde, 1990][Adams, Freese, 1990] tunnelling rate: $\Gamma(\phi) \propto \exp\left[-S_E(\phi)\right]$ (i) field stuck initially: $\phi \simeq \phi_{ini}$ and $\Gamma/H^4 \ll 1$ (ii) ϕ starts evolving eventually: $\Gamma/H^4 \gtrsim 1$ bubble nucleation turns on quick percolation (bubbles remain small) recent bound: $\beta > 320 H_{*}$ [G.Elor++,2311.16222] lacktriangle Introduce a **trigger field** ϕ to synchronise decay. eV scale adaption of first-order inflationary model [Linde, 1990][Adams, Freese, 1990] tunnelling rate: $\Gamma(\phi) \propto \exp\left[-S_E(\phi)\right]$ (i) field stuck initially: $\phi \simeq \phi_{ini}$ and $\Gamma/H^4 \ll 1$ (ii) ϕ starts evolving eventually: $\Gamma/H^4 \gtrsim 1$ bubble nucleation turns on quick percolation (bubbles remain small) recent bound: $\beta > 320 H_*$ [G.Elor++,2311.16222] lacktriangle Introduce a **trigger field** ϕ to synchronise decay. eV scale adaption of first-order inflationary model [Linde,1990][Adams,Freese,1990] tunnelling rate: $\Gamma(\phi) \propto \exp\left[-S_E(\phi)\right]$ (i) field stuck initially: $\phi \simeq \phi_{ini}$ and $\Gamma/H^4 \ll 1$ (ii) ϕ starts evolving eventually: $\Gamma/H^4 \gtrsim 1$ bubble nucleation turns on quick percolation (bubbles remain small) recent bound: $eta > 320 H_*$ lacktriangle Introduce a **trigger field** ϕ to synchronise decay. eV scale adaption of first-order inflationary model [Linde, 1990][Adams, Freese, 1990] tunnelling rate: $\Gamma(\phi) \propto \exp\left[-S_E(\phi)\right]$ (i) field stuck initially: $\phi \simeq \phi_{ini}$ and $\Gamma/H^4 \ll 1$ (ii) ϕ starts evolving eventually: $\Gamma/H^4 \gtrsim 1$ bubble nucleation turns on quick percolation (bubbles remain small) recent bound: $\beta > 320 H_{*}$ [G.Elor++,2311.16222] Transition is triggered at different places at different times due to fluctuations in trigger field, seeding perturbations in decaying fluid. lacktriangle Introduce a **trigger field** ϕ to synchronise decay. eV scale adaption of first-order inflationary model [Linde, 1990][Adams, Freese, 1990] tunnelling rate: $\Gamma(\phi) \propto \exp\left[-S_E(\phi)\right]$ (i) field stuck initially: $\phi \simeq \phi_{ini}$ and $\Gamma/H^4 \ll 1$ (ii) ϕ starts evolving eventually: $\Gamma/H^4 \gtrsim 1$ recent bound: $\beta > 320 H_{*}$ [G.Elor++,2311.16222] quick percolation (bubbles remain small) Transition is triggered at different places at different times due to fluctuations in trigger field, seeding perturbations in decaying fluid. lacktriangle Introduce a **trigger field** ϕ to synchronise decay. eV scale adaption of first-order inflationary model [Linde, 1990][Adams, Freese, 1990] tunnelling rate: $\Gamma(\phi) \propto \exp\left[-S_E(\phi)\right]$ (i) field stuck initially: $\phi \simeq \phi_{ini}$ and $\Gamma/H^4 \ll 1$ (ii) ϕ starts evolving eventually: $\Gamma/H^4 \gtrsim 1$ bubble nucleation turns on quick percolation (bubbles remain small) recent bound: $\beta > 320 H_{*}$ [G.Elor++,2311.16222] Transition is triggered at different places at different times due to fluctuations in trigger field, seeding perturbations in decaying fluid. lacktriangle Introduce a **trigger field** ϕ to synchronise decay. eV scale adaption of first-order inflationary model [Linde, 1990][Adams, Freese, 1990] tunnelling rate: $\Gamma(\phi) \propto \exp\left[-S_E(\phi)\right]$ (i) field stuck initially: $\phi \simeq \phi_{ini}$ and $\Gamma/H^4 \ll 1$ (ii) ϕ starts evolving eventually: $\Gamma/H^4 \gtrsim 1$ bubble nucleation turns on quick percolation (bubbles remain small) recent bound: $\beta > 320 H_{*}$ [G.Elor++,2311.16222] - Transition is triggered at different places at different times due to fluctuations in trigger field, seeding perturbations in decaying fluid. - Presence of trigger tied to microphysical model building. ## Cold New Early Dark Energy lacktriangle Introduce a **trigger field** ϕ to synchronise decay. eV scale adaption of first-order inflationary model [Linde, 1990][Adams, Freese, 1990] tunnelling rate: $\Gamma(\phi) \propto \exp\left[-S_E(\phi)\right]$ (i) field stuck initially: $\phi \simeq \phi_{ini}$ and $\Gamma/H^4 \ll 1$ (ii) ϕ starts evolving eventually: $\Gamma/H^4 \gtrsim 1$ bubble nucleation turns on quick percolation (bubbles remain small) - Transition is triggered at different places at different times due to fluctuations in trigger field, seeding perturbations in decaying fluid. - Presence of trigger tied to microphysical model building. - Implementation in Boltzmann solver CLASS -> TriggerCLASS #### The H_0 Olympics: A fair ranking of proposed models Schöneberg et al., 2022 Nils Schöneberg, a Guillermo Franco Abellán, b Andrea Pérez Sánchez, a Samuel J. Witte, c Vivian Poulin, b and Julien Lesgourgues a | Model | $\Delta N_{ m param}$ | M_B | Gaussian
Tension | $Q_{\rm DMAP}$
Tension | | $\Delta \chi^2$ | $\Delta { m AIC}$ | | Finalist | | |--------------------------|-----------------------|---------------------|----------------------|---------------------------|--------------|-----------------|-------------------|--------------|----------|--------| | $\Lambda \mathrm{CDM}$ | 0 | -19.416 ± 0.012 | $\frac{4.4\sigma}{}$ | 4.5σ | X | 0.00 | 0.00 | X | X | | | Majoron | 3 | -19.380 ± 0.027 | 3.0σ | 2.9σ | \checkmark | -13.74 | -7.74 | \checkmark | ✓ ② | | | primordial B | 1 | -19.390 ± 0.018 | 3.5σ | 3.5σ | X | -10.83 | -8.83 | \checkmark | √ ③ | | | varying m_e | 1 | -19.391 ± 0.034 | 2.9σ | 3.2σ | X | -9.87 | -7.87 | \checkmark | √ ③ | axiEDE | | varying $m_e + \Omega_k$ | 2 | -19.368 ± 0.048 | 2.0σ | 1.7σ | \checkmark | -16.11 | -12.11 | \checkmark | ✓ ● | A | | EDE | 3 | -19.390 ± 0.016 | 3.6σ | 1.6σ | \checkmark | -20.80 | -14.80 | \checkmark | ✓ 2 | | | NEDE | 3 | -19.380 ± 0.021 | 3.2σ | 2.0σ | √ | -17.70 | -11.70 | √ | √ 2 ← | - NEDE | [Planck 2018 + BAO + Pantheon (+ SH0ES)] #### **▶** Competition 2022: EDE-type models reduce tension to ~ 2 sigma. #### The H_0 Olympics: A fair ranking of proposed models Schöneberg et al., 2022 Nils Schöneberg, a Guillermo Franco Abellán, b Andrea Pérez Sánchez, a Samuel J. Witte, c Vivian Poulin, b and Julien Lesgourgues a | Model | $\Delta N_{ m param}$ | M_B | Gaussian | Q_{DMAP} | | Λv^2 | $\Delta { m AIC}$ | | Finalist | | |--------------------------|-----------------------|---|-------------|---------------------|--------------|---------------|-------------------|--------------|--------------
--| | Wiodol | -1 · param | 111111111111111111111111111111111111111 | Tension | Tension | | | _ | | 1 mans | | | $\Lambda \mathrm{CDM}$ | 0 | -19.416 ± 0.012 | 4.4σ | 4.5σ | X | 0.00 | 0.00 | X | X | | | Majoron | 3 | -19.380 ± 0.027 | 3.0σ | 2.9σ | \checkmark | -13.74 | -7.74 | \checkmark | ✓ ② | | | primordial B | 1 | -19.390 ± 0.018 | 3.5σ | 3.5σ | X | -10.83 | -8.83 | \checkmark | √ ③ | | | varying m_e | 1 | -19.391 ± 0.034 | 2.9σ | 3.2σ | X | -9.87 | -7.87 | \checkmark | √ ⑤ | axiEDE | | varying $m_e + \Omega_k$ | 2 | -19.368 ± 0.048 | 2.0σ | 1.7σ | \checkmark | -16.11 | -12.11 | \checkmark | √ 0 ♠ | and the same of th | | EDE | 3 | -19.390 ± 0.016 | 3.6σ | 1.6σ | \checkmark | -20.80 | -14.80 | \checkmark | ✓ ② 🤻 | | | NEDE | 3 | -19.380 ± 0.021 | 3.2σ | 2.0σ | √ | -17.70 | -11.70 | √ | ✓ ② ﴿ | NEDE | [Planck 2018 + BAO + Pantheon (+ SH0ES)] #### **▶** Competition 2022: EDE-type models reduce tension to ~ 2 sigma. Strong projection effects at play. e.g. [J. Cruz, S. Hannestad, E. Holm, F. N., M. S. Sloth, T. Tram], also [Herold+ +,2112.12140] The H_0 Olympics: A fair ranking of proposed models Schöneberg et al., 2022 Nils Schöneberg, a Guillermo Franco Abellán, b Andrea Pérez Sánchez, a Samuel J. Witte, c Vivian Poulin, b and Julien Lesgourgues a | Model | $\Delta N_{ m param}$ | M_B | Gaussian
Tension | $Q_{\rm DMAP}$
Tension | | $\Delta \chi^2$ | $\Delta { m AIC}$ | | Finalist | | |--------------------------|-----------------------|---------------------|---------------------|---------------------------|--------------|-----------------|-------------------|--------------|------------|---| | ΛCDM | 0 | -19.416 ± 0.012 | 4.4σ | 4.5σ | X | 0.00 | 0.00 | X | X | | | Majoron | 3 | -19.380 ± 0.027 | 3.0σ | 2.9σ | \checkmark | -13.74 | -7.74 | \checkmark | ✓ ② | | | primordial B | 1 | -19.390 ± 0.018 | 3.5σ | 3.5σ | X | -10.83 | -8.83 | \checkmark | √ ③ | | | varying m_e | 1 | -19.391 ± 0.034 | 2.9σ | 3.2σ | X | -9.87 | -7.87 | \checkmark | √ ③ | axiEDE | | varying $m_e + \Omega_k$ | 2 | -19.368 ± 0.048 | 2.0σ | 1.7σ | \checkmark | -16.11 | -12.11 | \checkmark | √ 0 | , Area of the latest and | | EDE | 3 | -19.390 ± 0.016 | 3.6σ | 1.6σ | \checkmark | -20.80 | -14.80 | \checkmark | ✓ ② 🍑 | | | NEDE | 3 | -19.380 ± 0.021 | 3.2σ | 2.0σ | \checkmark | -17.70 | -11.70 | √ | ✓ ② ◆ | - NEDE | [Planck 2018 + BAO + Pantheon (+ SH0ES)] **▶** Competition 2022: EDE-type models reduce tension to ~ 2 sigma. Strong projection effects at play. e.g. [J. Cruz, S. Hannestad, E. Holm, F. N., M. S. Sloth, T. Tram], also [Herold+ +,2112.12140] **Update 2024** (with A. Chatrchyan, V. Poulin, and M. S. Sloth) The H_0 Olympics: A fair ranking of proposed models Schöneberg et al., 2022 Nils Schöneberg, a Guillermo Franco Abellán, b Andrea Pérez Sánchez, a Samuel J. Witte, c Vivian Poulin, b and Julien Lesgourgues a | Model | $\Delta N_{ m param}$ | M_B | Gaussian
Tension | $Q_{\rm DMAP}$
Tension | | $\Delta \chi^2$ | $\Delta { m AIC}$ | | Finalist | | |--------------------------|-----------------------|---------------------|---------------------|---------------------------|--------------|-----------------|-------------------|--------------|----------|---------| | ΛCDM | 0 | -19.416 ± 0.012 | 4.4σ | 4.5σ | X | 0.00 | 0.00 | X | X | | | Majoron | 3 | -19.380 ± 0.027 | 3.0σ | 2.9σ | \checkmark | -13.74 | -7.74 | \checkmark | √ ② | | | primordial B | 1 | -19.390 ± 0.018 | 3.5σ | 3.5σ | X | -10.83 | -8.83 | \checkmark | √ ⑤ | | | varying m_e | 1 | -19.391 ± 0.034 | 2.9σ | 3.2σ | X | -9.87 | -7.87 | \checkmark | √ ⑤ | axiEDE | | varying $m_e + \Omega_k$ | 2 | -19.368 ± 0.048 | 2.0σ | 1.7σ | \checkmark | -16.11 | -12.11 | \checkmark | √ | - Armer | | EDE | 3 | -19.390 ± 0.016 | 3.6σ | 1.6σ | \checkmark | -20.80 | -14.80 | \checkmark | ✓ ② 🦚 | | | NEDE | 3 | -19.380 ± 0.021 | 3.2σ | 2.0σ | √ | -17.70 | -11.70 | ✓ | ✓ 2 ◆ | NEDE | [Planck 2018 + BAO + Pantheon (+ SH0ES)] **▶** Competition 2022: EDE-type models reduce tension to ~ 2 sigma. Strong projection effects at play. e.g. [J. Cruz, S. Hannestad, E. Holm, F. N., M. S. Sloth, T. Tram], also [Herold+ +,2112.12140] Update 2024 (with A. Chatrchyan, V. Poulin, and M. S. Sloth) Change I: (Planck 2018, Pantheon+, DESI BAO DR1) ->tension: ~ 2 sigma The H_0 Olympics: A fair ranking of proposed models Schöneberg et al., 2022 Nils Schöneberg, a Guillermo Franco Abellán, b Andrea Pérez Sánchez, a Samuel J. Witte, c Vivian Poulin, b and Julien Lesgourgues a | Model | $\Delta N_{ m param}$ | M_B | Gaussian
Tension | $Q_{\rm DMAP}$
Tension | | $\Delta \chi^2$ | $\Delta { m AIC}$ | | Finalist | | |--------------------------|-----------------------|---------------------|---------------------|---------------------------|--------------|-----------------|-------------------|--------------|----------
--| | ΛCDM | 0 | -19.416 ± 0.012 | 4.4σ | 4.5σ | X | 0.00 | 0.00 | X | X | | | Majoron | 3 | -19.380 ± 0.027 | 3.0σ | 2.9σ | \checkmark | -13.74 | -7.74 | \checkmark | ✓ ② | | | primordial B | 1 | -19.390 ± 0.018 | 3.5σ | 3.5σ | X | -10.83 | -8.83 | \checkmark | √ ⑤ | | | varying m_e | 1 | -19.391 ± 0.034 | 2.9σ | 3.2σ | X | -9.87 | -7.87 | \checkmark | √ ⑤ | axiEDE | | varying $m_e + \Omega_k$ | 2 | -19.368 ± 0.048 | 2.0σ | 1.7σ | \checkmark | -16.11 | -12.11 | \checkmark | √ | ALE TO THE PARTY OF O | | EDE | 3 | -19.390 ± 0.016 | 3.6σ | 1.6σ | \checkmark | -20.80 | -14.80 | \checkmark | ✓ ② 🦓 | | | NEDE | 3 | -19.380 ± 0.021 | 3.2σ | 2.0σ | √ | -17.70 | -11.70 | √ | ✓ 2 ← | NEDE | [Planck 2018 + BAO + Pantheon (+ SH0ES)] Competition 2022: EDE-type models reduce tension to ~ 2 sigma. Strong projection effects at play. e.g. [J. Cruz, S. Hannestad, E. Holm, F. N., M. S. Sloth, T. Tram], also [Herold+ +,2112.12140] Update 2024 (with A. Chatrchyan, V. Poulin, and M. S. Sloth) - **Change I:** (Planck 2018, **Pantheon+**, **DESI BAO DR1**) - ->tension: ~ 2 sigma - **Change II:** (Planck NPIPE, Pantheon+, DESI BAO DR1) - ->tension: ~2.5 sigma (~3.5 sigma with old BAO) The H_0 Olympics: A fair ranking of proposed models Schöneberg et al., 2022 Nils Schöneberg, ^a Guillermo Franco Abellán, ^b Andrea Pérez Sánchez, ^a Samuel J. Witte, ^c Vivian Poulin, ^b and Julien Lesgourgues ^a | Model | $\Delta N_{ m param}$ | M_B | Gaussian
Tension | $Q_{\rm DMAP}$
Tension | | $\Delta \chi^2$ | $\Delta { m AIC}$ | | Finalist | | |--------------------------|-----------------------|---------------------|---------------------|---------------------------|--------------|-----------------|-------------------|--------------|----------|-----------| | ΛCDM | 0 | -19.416 ± 0.012 | 4.4σ | 4.5σ | X | 0.00 | 0.00 | X | X | | | Majoron | 3 | -19.380 ± 0.027 | 3.0σ | 2.9σ | \checkmark | -13.74 | -7.74 | \checkmark | √ ② | | | primordial B | 1 | -19.390 ± 0.018 | 3.5σ | 3.5σ | X | -10.83 | -8.83 | \checkmark | √ ⑤ | | | varying m_e | 1 | -19.391 ± 0.034 | 2.9σ | 3.2σ | X | -9.87 | -7.87 | \checkmark | √ ⑤ | axiEDE | | varying $m_e + \Omega_k$ | 2 | -19.368 ± 0.048 | 2.0σ | 1.7σ | \checkmark | -16.11 | -12.11 | \checkmark | √ | - Arrange | | EDE | 3 | -19.390 ± 0.016 | 3.6σ | 1.6σ | \checkmark | -20.80 | -14.80 | \checkmark | ✓ ② 🦚 | | | NEDE | 3 | -19.380 ± 0.021 | 3.2σ | 2.0σ | √ | -17.70 | -11.70 | ✓ | ✓ 2 ◆ | NEDE | [Planck 2018 + BAO + Pantheon (+ SH0ES)] **▶** Competition 2022: EDE-type models reduce tension to ~ 2 sigma. Strong projection effects at play. e.g. [J. Cruz, S. Hannestad, E. Holm, F. N., M. S. Sloth, T. Tram], also [Herold+ +,2112.12140] **Update 2024** (with A. Chatrchyan, V. Poulin, and M. S. Sloth) - **Change I:** (Planck 2018, **Pantheon+**, **DESI BAO DR1**) - ->tension: ~ 2 sigma - **Change II:** (Planck NPIPE, Pantheon+, DESI BAO DR1) - ->tension: ~2.5 sigma (~3.5 sigma with old BAO) - Model building clue: fluid after phase transition could be a mixture of radiation (w=1/3) and stiff (w=1) fluid. # The H_0 Olympics: A fair ranking of proposed models Nils Schöneberg, Guillermo Franco Abellán, Andrea Pérez Sánchez, Samuel J. Witte, Vivian Poulin, Jand Julien Lesgourgues | Model | $\Delta N_{ m param}$ | M_B | Gaussian
Tension | $Q_{\rm DMAP}$
Tension | | $\Delta \chi^2$ | $\Delta { m AIC}$ | | Finalist | | |--------------------------|-----------------------|---------------------|---------------------|---------------------------|--------------|-----------------|-------------------|--------------|--------------|--------| | $\Lambda \mathrm{CDM}$ | 0 | -19.416 ± 0.012 | 4.4σ | 4.5σ | X | 0.00 | 0.00 | X | X | | | Majoron | 3 | -19.380 ± 0.027 | 3.0σ | 2.9σ | \checkmark | -13.74 | -7.74 | \checkmark | ✓ ② | | | primordial B | 1 | -19.390 ± 0.018 | 3.5σ | 3.5σ | X | -10.83 | -8.83 | \checkmark | √ ③ | | | varying m_e | 1 | -19.391 ± 0.034 | 2.9σ | 3.2σ | X | -9.87 | -7.87 | \checkmark | √ ③ | axiEDE | | varying $m_e + \Omega_k$ | 2 | -19.368 ± 0.048 | 2.0σ | 1.7σ | \checkmark | -16.11 | -12.11 | \checkmark | √ 0 ∧ | | | EDE | 3 | -19.390 ± 0.016 | 3.6σ | 1.6σ | \checkmark | -20.80 | -14.80 | \checkmark | ✓ ② 🍇 | | | NEDE | 3 | -19.380 ± 0.021 | 3.2σ | 2.0σ | √ | -17.70 | -11.70 | √ | √ 2 ← | - NEDE | [Planck 2018 + BAO + Pantheon (+ SH0ES)] Schöneberg et al., 2022 #### **▶** Competition 2022: EDE-type models reduce tension to ~ 2 sigma. Strong projection effects at play. e.g. [J. Cruz, S. Hannestad, E. Holm, F. N., M. S. Sloth, T. Tram], also [Herold+ +,2112.12140] #### Update 2024 (with A. Chatrchyan, V. Poulin, and M. S. Sloth) - **Change I:** (Planck 2018, **Pantheon+**, **DESI BAO DR1**) - ->tension: ~ 2 sigma - **Change II:** (Planck NPIPE, Pantheon+, DESI BAO DR1) - ->tension: ~2.5 sigma (~3.5 sigma with old BAO) - ▶ Model building clue: fluid after phase transition could be a mixture of radiation (w=1/3) and stiff (w=1) fluid. - Upshot: Cold NEDE remains competitive model. The H_0 Olympics: A fair ranking of proposed models Nils Schöneberg, a Guillermo Franco Abellán, h Andrea Pérez Sánchez,^a Samuel J. Witte,^c Vivian Poulin,^b and Julien Lesgourgues^a | Model | $\Delta N_{ m param}$ | M_B | Gaussian
Tension | $Q_{\rm DMAP}$
Tension | | $\Delta \chi^2$ | $\Delta { m AIC}$ | | Finalist | | |--------------------------|-----------------------|---------------------|---------------------|---------------------------|--------------|-----------------|-------------------|--------------|----------------|--------| | $\Lambda \mathrm{CDM}$ | 0 | -19.416 ± 0.012 | 4.4σ | 4.5σ | X | 0.00 | 0.00 | X | X | | | Majoron | 3 | -19.380 ± 0.027 | 3.0σ | 2.9σ | \checkmark | -13.74 | -7.74 | \checkmark | √ ② | | | primordial B | 1 | -19.390 ± 0.018 | 3.5σ | 3.5σ | X | -10.83 | -8.83 | \checkmark | √ ⑤ | | | varying m_e | 1 | -19.391 ± 0.034 | 2.9σ | 3.2σ | X | -9.87 | -7.87 | \checkmark | √ ⑤ | axiEDE | | varying $m_e + \Omega_k$ | 2 | -19.368 ± 0.048 | 2.0σ | 1.7σ | \checkmark | -16.11 | -12.11 | \checkmark | √ 0 a . | | | EDE | 3 | -19.390 ± 0.016 | 3.6σ | 1.6σ | \checkmark | -20.80 | -14.80 | \checkmark | ✓ ② 🦚 | | | NEDE | 3 | -19.380 ± 0.021 | 3.2σ | 2.0σ | √ | -17.70 | -11.70 | √ | ✓ ② ← | - NEDE | [Planck 2018 + BAO + Pantheon (+ SH0ES)] Schöneberg et al., 2022 **▶** Competition 2022: EDE-type models reduce tension to ~ 2 sigma. Strong projection effects at play. e.g. [J. Cruz, S. Hannestad, E. Holm, F. N., M. S. Sloth, T. Tram], also [Herold+ +,2112.12140 (with A. Chatrchyan, V. Poulin, Update 2024 and M. S. Sloth) - Change I: (Planck 2018, Pantheon+, DESI BAO DR1) - ->tension: ~ 2 sigma - Change II: (Planck NPIPE, Pantheon+, DESI BAO DR1) - ->tension: ~2.5 sigma (~3.5 sigma with old BAO) - Model building clue: fluid after phase transition could be a mixture of radiation (w=1/3) and stiff (w=1) fluid. - Upshot: Cold NEDE remains competitive model. - Outlook: more theoretical (origin of w=1) and phenomenological (new ACT data) work required! Minimal modification. Minimal modification. Convenient parametrisation: $\Delta N_{ m eff}= ho_{ m DR}/ ho_{1, u}$ \rightarrow additional neutrinos" Minimal modification. Convenient parametrisation: $$\Delta N_{ m eff}= ho_{ m DR}/ ho_{1, u}$$ "additional neutrinos" Dark sector temperature:
$T_d^4/T_{ m vis}^4=g_{ m rel,d}^{-1}\, rac{7}{4}\left(rac{4}{11} ight)^{4/3}\Delta N_{ m eff}$ Minimal modification. Convenient parametrisation: $$\Delta N_{ m eff}= ho_{ m DR}/ ho_{1, u}$$ "additional neutrinos" Dark sector temperature: $T_d^4/T_{ m vis}^4=g_{ m rel,d}^{-1}\, rac{7}{4}\left(rac{4}{11} ight)^{4/3}\Delta N_{ m eff}$ ▶ Free streaming DR: Too constrained by phase shift induced in CMB power spectrum. [Aloni++,2111.00014] $$\phi_{\rm FS} \approx 0.6 \frac{N_{\rm eff,\nu} + \Delta N_{\rm eff}}{4.4 + N_{\rm eff,\nu} + \Delta N_{\rm eff}}$$ Minimal modification. Convenient parametrisation: $$\Delta N_{ m eff}= ho_{ m DR}/ ho_{1, u}$$ * additional neutrinos" Dark sector temperature: $T_d^4/T_{ m vis}^4=g_{ m rel,d}^{-1}\, rac{7}{4}\left(rac{4}{11} ight)^{4/3}\Delta N_{ m eff}$ - ▶ Free streaming DR: Too constrained by phase shift induced in CMB power spectrum. [Aloni++,2111.00014] - Strongly self-interacting DR (SIDR) more promising. $$\Gamma\gg H$$ \longrightarrow (i) no free-streaming (ii) SIDR acts as perturbed fluid Example: massless gauge bosons of dark SU(N) $$\phi_{\rm FS} \approx 0.6 \frac{N_{\rm eff,\nu} + \Delta N_{\rm eff}}{4.4 + N_{\rm eff,\nu} + \Delta N_{\rm eff}}$$ Minimal modification. Convenient parametrisation: $$\Delta N_{ m eff}= ho_{ m DR}/ ho_{1, u}$$ ~ "additional neutrinos" Dark sector temperature: $T_d^4/T_{ m vis}^4=g_{ m rel,d}^{-1}\, rac{7}{4}\left(rac{4}{11} ight)^{4/3}\Delta N_{ m eff}$ - ▶ Free streaming DR: Too constrained by phase shift induced in CMB power spectrum. [Aloni++,2111.00014] - Strongly self-interacting DR (SIDR) more promising. $$\Gamma\gg H$$ (i) no free-streaming (ii) SIDR acts as perturbed fluid Example: massless gauge bosons of dark SU(N) ▶ Different sophistications: stepped SIDR (mass threshold), coupled DM-DR, ... e.g. [Aloni++,2207.03500] $$\phi_{\rm FS} \approx 0.6 \frac{N_{\rm eff,\nu} + \Delta N_{\rm eff}}{4.4 + N_{\rm eff,\nu} + \Delta N_{\rm eff}}$$ Minimal modification. Convenient parametrisation: $$\Delta N_{ m eff}= ho_{ m DR}/ ho_{1, u}$$ * additional neutrinos" Dark sector temperature: $T_d^4/T_{ m vis}^4=g_{ m rel,d}^{-1}\, rac{7}{4}\left(rac{4}{11} ight)^{4/3}\Delta N_{ m eff}$ - ▶ Free streaming DR: Too constrained by phase shift induced in CMB power spectrum. [Aloni++,2111.00014] - Strongly self-interacting DR (SIDR) more promising. $$\Gamma\gg H$$ (i) no free-streaming (ii) SIDR acts as perturbed fluid Example: massless gauge bosons of dark SU(N) - ▶ Different sophistications: stepped SIDR (mass threshold), coupled DM-DR, ... e.g. [Aloni++,2207.03500] - Depending on detailed model: brings tension to ~3 sigma level. [2306.12469, 2305.14166] $$\phi_{\rm FS} \approx 0.6 \frac{N_{\rm eff,\nu} + \Delta N_{\rm eff}}{4.4 + N_{\rm eff,\nu} + \Delta N_{\rm eff}}$$ Minimal modification. Convenient parametrisation: $$\Delta N_{ m eff}= ho_{ m DR}/ ho_{1, u}$$ * additional neutrinos" Dark sector temperature: $T_d^4/T_{ m vis}^4=g_{ m rel,d}^{-1}\, rac{7}{4}\left(rac{4}{11} ight)^{4/3}\Delta N_{ m eff}$ - ▶ Free streaming DR: Too constrained by phase shift induced in CMB power spectrum. [Aloni++,2111.00014] - Strongly self-interacting DR (SIDR) more promising. $$\Gamma\gg H$$ (i) no free-streaming (ii) SIDR acts as perturbed fluid Example: massless gauge bosons of dark SU(N) - ▶ Different sophistications: stepped SIDR (mass threshold), coupled DM-DR, ... e.g. [Aloni++,2207.03500] - ▶ Depending on detailed model: brings tension to ~3 sigma level. [2306.12469, 2305.14166] - ▶ Challenge: Resolution of Hubble tension incompatible with BBN e.g. [Schöneberg++,2206.11276] $$\phi_{\rm FS} \approx 0.6 \frac{N_{\rm eff,\nu} + \Delta N_{\rm eff}}{4.4 + N_{\rm eff,\nu} + \Delta N_{\rm eff}}$$ (with M.Garny, H.Rubira, M.S.Sloth) - Supercooled phase transition with quick re-heating of dark sector allows avoidance of BBN constraint. - Simple microscopic model: SU(N) -> SU(N-1) through radiative symmetry breaking a la Coleman-Weinberg. - ▶ Redshift range: $z_{\rm rec} < z_* < 10^9$ (with M.Garny, H.Rubira, M.S.Sloth) ▶ Central simplifying assumptions: (i) $$p(t) \propto \exp\left(\beta(t-t_*)\right)$$ with $\beta\gg H_*=1/(2\,t_*)$ tubbles remain small (ii) "instantaneous" reheating - Supercooled phase transition with quick re-heating of dark sector allows avoidance of BBN constraint. - Simple microscopic model: SU(N) -> SU(N-1) through radiative symmetry breaking a la Coleman-Weinberg. - Redshift range: $$z_{\rm rec} < z_* < 10^9$$ The phase transition affects scalar perturbations in three ways: recent bound: $\beta > 320 H_{*}$ [G.Elor++,2311.16222] The phase transition affects scalar perturbations in three ways: 1. Bubbles of true vacuum generate perturbations on scales comparable to their size: irrelevant if bubbles remain small - The phase transition affects scalar perturbations in three ways: - 1. Bubbles of true vacuum generate perturbations on scales comparable to their size: - irrelevant if bubbles remain small - 2. Adiabatic fluctuations in dark sector temperature seed perturbations in post-p.t. fluid. - relevant for CMB + LSS - The phase transition affects scalar perturbations in three ways: - 1. Bubbles of true vacuum generate perturbations on scales comparable to their size: - irrelevant if bubbles remain small - 2. Adiabatic fluctuations in dark sector temperature seed perturbations in post-p.t. fluid. - relevant for CMB + LSS - Covariant perturbation matching implemented in CLASS solver. - The phase transition affects scalar perturbations in three ways: - 1. Bubbles of true vacuum generate perturbations on scales comparable to their size: - irrelevant if bubbles remain small - 2. Adiabatic fluctuations in dark sector temperature seed perturbations in post-p.t. fluid. - relevant for CMB + LSS - Covariant perturbation matching implemented in CLASS solver. - First results (triggered stepped SIDR): - The phase transition affects scalar perturbations in three ways: - 1. Bubbles of true vacuum generate perturbations on scales comparable to their size: - irrelevant if bubbles remain small - 2. Adiabatic fluctuations in dark sector temperature seed perturbations in post-p.t. fluid. - relevant for CMB + LSS - Covariant perturbation matching implemented in CLASS solver. - First results (triggered stepped SIDR): - ◆ Phase transition happens pre-CMB - The phase transition affects scalar perturbations in three ways: - 1. Bubbles of true vacuum generate perturbations on scales comparable to their size: - irrelevant if bubbles remain small - 2. Adiabatic fluctuations in dark sector temperature seed perturbations in post-p.t. fluid. - relevant for CMB + LSS - Covariant perturbation matching implemented in CLASS solver. - First results (triggered stepped SIDR): - ◆ Phase transition happens pre-CMB - ◆ Residual tension: 2.8 sigma [M.Garny++,2404.07256] - recent bound: $\beta > 320 H_{*}$ [G.Elor++,2311.16222] - The phase transition affects scalar perturbations in three ways: - 1. Bubbles of true vacuum generate perturbations on scales comparable to their size: - irrelevant if bubbles remain small - 2. Adiabatic fluctuations in dark sector temperature seed perturbations in post-p.t. fluid. - relevant for CMB + LSS - Covariant perturbation matching implemented in CLASS solver. - First results (triggered stepped SIDR): - ◆ Phase transition happens pre-CMB - ◆ Residual tension: 2.8 sigma [M.Garny++,2404.07256] ▶ Why bother with 3-sigma-residual-tension model? It provides well-motivated theoretical playground for testing more complete dark sector physics. - The phase transition affects scalar perturbations in three ways: - 1. Bubbles of true vacuum generate perturbations on scales comparable to their size: - irrelevant if bubbles remain small - 2. Adiabatic fluctuations in dark sector temperature seed perturbations in post-p.t. fluid. - relevant for CMB + LSS - Covariant perturbation matching implemented in CLASS solver. - First results (triggered stepped SIDR): - ◆ Phase transition happens pre-CMB - ◆ Residual tension: 2.8 sigma [M.Garny++,2404.07256] - ▶ Why bother with 3-sigma-residual-tension model? It provides well-motivated theoretical playground for testing more complete dark sector physics. - Work in progress [...] Stay tuned! - Stochastic gravitational wave background - ◆ Overlap with PTAs for phase transitions that occur close to BBN and create large bubbles. $$10^7 < z_* < 10^9$$ ◆ First estimate (envelope approximation, thin-wall, ...) - Stochastic gravitational wave background - Overlap with PTAs for phase transitions that occur close to BBN and create large bubbles. $$10^7 < z_* < 10^9$$ ◆ First estimate (envelope approximation, thin-wall, ...) #### Acoustic oscillations in DR fluid - ◆ Consequence of perturbation matching. - ◆ Imprinted in matter power spectrum. - ◆ Relevant if p.t. occurs sufficiently late: $$10^5 < z_* < 10^6$$ - Stochastic gravitational wave background - Overlap with PTAs for phase transitions that occur close to BBN and create large bubbles. $$10^7 < z_* < 10^9$$ ◆ First estimate (envelope approximation, thin-wall, ...) #### Acoustic oscillations in DR fluid - ◆ Consequence of perturbation matching. - ◆ Imprinted in matter power spectrum. - ◆ Relevant if p.t. occurs sufficiently late: $$10^5 < z_* < 10^6$$ #### CMB anisotropies - ◆ CMB provides lower bound on redshift - ◆ Difference with cold NEDE due to character of trigger field. - ◆ Acoustic oscillations in post p.t. fluid stronger in Hot NEDE. #### Summary - The **Hubble tension** calls for new physics operative during the CMB epoch. - Deportunity to probe new fundamental physics above (but close to) the eV scale! - A strong first-order phase transition offers a simple microscopic scenario. - ▶ Cold New Early Dark Energy relies on a triggered vacuum phase transition to bring the tension down to 2 sigma (challenges: describe post p.t. fluid, keep testing against new data). - Hot New Early Dark Energy relies on a supercooled p.t. to produce DR after BBN. - Simplest model:
Brings tension below 3 sigma... having microscopic scenario. - ... with unique signatures in matter power spectrum (+ PTAs). - Take home: - Exciting times in cosmology as constraining power of cosmological probes is increasing. - Phase transitions are a simple playground for (early) dark energy / dark radiation physics. - Time to go beyond model-independent parametrizations and use both theory and data constraints. - Invitation: Many ideas wait to be explored! ## Hot New Early Dark Energy ▶ Dark non-Abelian Higgs model with radiative breaking of conformal symmetry à la Coleman-Weinberg (CW) $$V(\psi;T_d)=V_0+B\psi^4\left(\ln\frac{\psi^2}{v^2}-\frac{1}{2}\right)-\frac{\mu_{\rm eff}^2}{2}\psi^2\left(1-\frac{\psi^2}{2v^2}\right)+\Delta V_{\rm thermal}(\psi;T_d)\;,\qquad \psi=\sqrt{2}|\Psi|$$ CW 1-loop result radiative symmetry breaking due to dim. transmutation $$V'(0)=V''(0)=0$$ nucleation inhibited for $T_d>T_d^*|_{\rm CW}(\ll v)$ supercooling supercooling conformal symmetry for $T_d\gg T_d^*|_{\rm CW}$ controlled supercooling $$\frac{N_{\rm eff}^{\rm after}-N_{\rm eff}^{\rm before}}{N_{\rm eff}^{\rm before}}\propto 1/\mu_{\rm eff}^4$$ controls energy injection (i) $$\beta/H_* \propto g^{-2}$$ (ii) $$\psi$$ efficient decay in massless gauge bosons $$\frac{\Gamma_{\psi \to AA}^{(\text{cm})}}{H_*} = \mathcal{O}(1) \times \frac{g^9 f_{\text{NEDE}}^{1/4}}{1 + z_*} 10^{24}$$ viable window \longrightarrow $0.1 \gtrsim g \gtrsim 0.01$