# The Dark Side of the Cosmos:

Exploring Dark Energy and Modified Gravity

CosmoVerse Conference 2025 @ (ITU, Istanbul, Turkey)

#### Mariam Bouhmadi-López

IKERBASQUE & EHU (Spain)



June 26th, 2025

- 1. Introduction
- 2. Speeding up with fields
- 3. Modified theory within f(Q) gravity
- 4. Conclusions

# Introduction

- The universe is homogeneous and isotropic on large scales (cosmological principle)
- The matter content of the universe:
  - Standard matter
  - Dark matter
  - Something that induce the late-time acceleration of the Universe
- The acceleration of the universe is backed by several measurments: H(z), Snela, BAO, CMB, LSS (matter power spectrum, growth function)...

- The effective equation of state of whatever is driving the current speed up of the universe is roughly -1.
- Such an acceleration could be due to:
  - A new component of the energy budget of the universe: dark energy;
     i.e. it could be Λ (i.e. a non dynamical dark energy), quintessence,
     of a phantom(-like/effective) nature
  - A change on the behaviour of gravity on the largest scale. No new component on the budget of the universe but rather simply gravity modifies its behaviour, within a metric, Palatini (affine metric), in presence of torsion or non-metricity ....

#### **Cosmological problems**

- If  $\Lambda$  is driving the current acceleration of the Universe, then:
  - Coincidence problem. How is this sensible to initial conditions?
  - Why now? Dark energy seems to be dominant only at late-time, not before.
  - Fine-tuning problem. New energetic scale  $\rho_{\Lambda} \approx 10^{-47}$  GeV <sup>4</sup>. It is very small compared to other scales.
  - Cosmological tensions, in particula the Hubble tension.
- How might evolving dark energy models or extended theories of gravity help to address the issues discussed above?

# Speeding up with fields

## Speeding up with fields

Quintessence through a genealised axion-like potential

#### Quintessence

• Minimally coupled canonical scalar field:

$$L = \frac{1}{2k^2}R - \frac{1}{2}g^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi - V(\phi) + L_{r,m}.$$

- $\phi$  is a dynamical field.
- Coincidence problem. It can be alleviated by scaling solutions and tracker fields.
- Fine-tuning problem remains unsolved.
- Some quintessence models allow for a natural explanation of why now?
- Could the tensions  $H_0$  and  $S_8$  been alleviated?
- An axion-like potential: V(φ) = Λ<sup>4</sup>[1 − cos(φ/η)]<sup>-n</sup> with a generalisation to negative exponents, i.e. 0 < n.</li>
- Previously analised on the context of wave dark matter and early dark energy *Wave Dark Matter* (L. Hui). [arXiv:2101.11735], *Dark energy from the string axiverse* (M.

Kamionkowski). [arXiv:1409.0549]

#### Dynamical system

Dynamical variables (FLRW filled by rad., mat. and an axion-like field):

$$x = \frac{k\dot{\phi}}{\sqrt{6}H}, \quad y = \frac{k\sqrt{V}}{\sqrt{3}H}, \quad \lambda = -\frac{V_{,\phi}}{kV}, \quad z = \Omega_r^{1/2} = \frac{k\sqrt{\rho_r}}{\sqrt{3}H}.$$

- Matter part:  $\Omega_m = 1 x^2 y^2 z^2$ .
- Autonomous closed system of equations:

$$\begin{aligned} x' &= \frac{1}{2} \left[ -3x + 3x^3 - 3xy^2 + xz^2 \right] + \sqrt{\frac{3}{2}} \lambda y^2, \\ y' &= \frac{1}{2} \left[ 3y - 3y^3 + 3yx^2 + yz^2 \right] - \sqrt{\frac{3}{2}} \lambda xy, \\ z' &= \frac{1}{2} \left[ -z + z^3 + 3zx^2 - 3zy^2 \right], \end{aligned}$$

 $\lambda' = -\sqrt{6}f(\lambda)x, \qquad f(\lambda) = \lambda^2[\Gamma(\lambda) - 1], \qquad \Gamma = \frac{V_{,\phi\phi}V}{(V_{,\phi})^2}$ 

| Point          | X | У | z | $\lambda$ | Weff | Stability                         |
|----------------|---|---|---|-----------|------|-----------------------------------|
| A <sub>1</sub> | 0 | 0 | 0 | Any       | 0    | Saddle                            |
| A <sub>2</sub> | 0 | 0 | 1 | Any       | 1/3  | Saddle                            |
| E              | 0 | 1 | 0 | 0         | -1   | (Un)Stable if $n > 0$ ( $n < 0$ ) |

Unique evolution of  $\phi$ . It does not depend on the initial conditions.

Tracking regime given by  $\omega_{\phi} \approx const$ .

- Tracking with  $\omega_{\phi} > \omega$ : it could happen, but it is disregarded (structure formation suppression). Here  $\omega$  stands for EoS of radiation or matter.
- Tracking with  $\omega_{\phi} < \omega$ :  $\Gamma > 1$  and  $\Gamma \approx const.$  in the regime  $\lambda \gg 1.$

$$\omega_{\phi} = \frac{\omega - 2(\Gamma - 1)}{1 + 2(\Gamma - 1)}.$$

#### **Axion-like potential**



- Cosmological constant in the limit  $n \rightarrow 0$ .
- Minimum at  $\phi/\eta = \pi \rightarrow V \approx V_{\min} + \frac{1}{2}m^2(\phi \pi\eta)^2$  where  $V_{\min} \equiv \Lambda^4/2^n$  and  $m^2 \equiv n\Lambda^4/(2^{n+1}\eta^2)$ .
- $\phi_{ini}/\eta \ll 1$  in order to have non-trivial evolution  $\rightarrow \lambda_{ini} \gg 1$ .

#### Fixed points and tracking

- Fixed points: A<sub>1</sub>, A<sub>2</sub> and E (minimum of the potential). E is an attractor → Late-time acceleration.
- $\Gamma(\lambda) = 1 + \frac{1}{2n} + \frac{n}{2k^2\eta^2\lambda^2}$ . In the regime  $\lambda \gg 1$ :  $\Gamma \approx 1 + \frac{1}{2n} \rightarrow$ **Tracking behaviour** with  $\omega_{\phi} < \omega$ .
- Tracking regime given by  $\omega_{\phi} \approx -\frac{2(\Gamma-1)}{1+2(\Gamma-1)} = -\frac{1}{1+n}$   $(\omega = 0).$



Matter power spectrum suppression:



#### f $\sigma$ 8 distribution:



#### Fitting the model-1-



H.-W. Chiang, C.G. Boiza and M.B.-L.: arxiv:2503.04898

### Comparing the model



#### Fitting the model-2-

|                          | CMB                 | + BAO               | + SNe               | + low-z             | + DES Y1            |
|--------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| $10^3\Omega_{to}h^2$     | $22.19 \pm 0.13$    | $22.29 \pm 0.12$    | $22.26 \pm 0.12$    | $22.34 \pm 0.12$    | $22.38 \pm 0.12$    |
| $10^{3}\Omega_{c0}h^{2}$ | $119.7 \pm 1.0$     | $118.26 \pm 0.81$   | $118.56 \pm 0.79$   | $117.80 \pm 0.76$   | $117.27 \pm 0.72$   |
| $10^5 \theta_{MC}$       | $1040.77 \pm 0.25$  | $1040.94 \pm 0.24$  | $1040.91 \pm 0.24$  | $1041.01 \pm 0.24$  | $1041.05 \pm 0.24$  |
| $\ln(10^{10}A_s)$        | $3.037 \pm 0.014$   | $3.044 \pm 0.014$   | $3.043 \pm 0.014$   | $3.047 \pm 0.014$   | $3.046 \pm 0.014$   |
| n.,                      | $0.9636 \pm 0.0040$ | $0.9672 \pm 0.0036$ | $0.9665 \pm 0.0036$ | $0.9685 \pm 0.0036$ | $0.9693 \pm 0.0036$ |
| Treiu                    | $0.0524 \pm 0.0071$ | $0.0571 \pm 0.0071$ | $0.0562 \pm 0.0070$ | $0.0587 \pm 0.0071$ | $0.0589 \pm 0.0071$ |
| $H_0$                    | $67.24 \pm 0.46$    | $67.89 \pm 0.36$    | $67.76 \pm 0.35$    | $68.12 \pm 0.34$    | $68.36 \pm 0.32$    |
| $\Omega_{m0}$            | $0.3154 \pm 0.0064$ | $0.3064 \pm 0.0048$ | $0.3082 \pm 0.0047$ | $0.3034 \pm 0.0044$ | $0.3003 \pm 0.0042$ |
| σ8                       | $0.8077 \pm 0.0055$ | $0.8064 \pm 0.0056$ | $0.8067 \pm 0.0056$ | $0.8061 \pm 0.0057$ | $0.8041 \pm 0.0055$ |
| $S_8$                    | $0.828 \pm 0.011$   | $0.8149 \pm 0.0090$ | $0.8176 \pm 0.0090$ | $0.8107 \pm 0.0087$ | $0.8044 \pm 0.0080$ |
| DIC                      | $5497.90 \pm 0.12$  | $5507.21 \pm 0.37$  | $6209.34 \pm 0.14$  | $6217.77 \pm 0.43$  | $6477.38 \pm 0.28$  |
| WAIC                     | $5499.09 \pm 0.50$  | $5507.85 \pm 0.18$  | $6210.36 \pm 0.21$  | $6218.68 \pm 0.21$  | $6481.16 \pm 0.22$  |
| $-\ln B$                 | $5499.3 \pm 1.1$    | $5508.13 \pm 0.73$  | $6210.51 \pm 0.44$  | $6219.1 \pm 1.4$    | $6479.9 \pm 1.2$    |

Table 2. Mean and standard deviation of cosmological parameters, late-time observables, and statistical probes for ACDM model. From left to right are gradually larger datasets that progressively add in datasets of CMB, BAO, etc., as defined in section 3.1.

|                                                  | CMB                          | + BAO               | + SNe                | + low-z             | + DES Y1             |
|--------------------------------------------------|------------------------------|---------------------|----------------------|---------------------|----------------------|
| $10^{3}\Omega_{b0}h^{2}$                         | $22.18 \pm 0.13$             | $22.28 \pm 0.12$    | $22.28 \pm 0.12$     | $22.34 \pm 0.12$    | $22.39 \pm 0.12$     |
| $10^{3}\Omega_{c0}h^{2}$                         | $119.8 \pm 1.1$              | $118.29 \pm 0.80$   | $118.40 \pm 0.83$    | $117.73 \pm 0.79$   | $117.22 \pm 0.73$    |
| $10^5 \theta_{MC}$                               | $1040.76 \pm 0.25$           | $1040.95 \pm 0.24$  | $1040.93 \pm 0.24$   | $1041.03 \pm 0.23$  | $1041.06 \pm 0.26$   |
| $\ln(10^{10}A_s)$                                | $3.039 \pm 0.014$            | $3.044 \pm 0.014$   | $3.044 \pm 0.014$    | $3.048 \pm 0.014$   | $3.048 \pm 0.014$    |
| n <sub>s</sub>                                   | $0.9634 \pm 0.0040$          | $0.9671 \pm 0.0036$ | $0.9669 \pm 0.0037$  | $0.9686 \pm 0.0036$ | $0.9694 \pm 0.0035$  |
| $\tau_{reio}$                                    | $0.0532 \pm 0.0071$          | $0.0568 \pm 0.0073$ | $0.0566 \pm 0.0071$  | $0.0590 \pm 0.0072$ | $0.0596 \pm 0.0073$  |
| $\log_{10}(\rho_{\text{DE},0}/V_{\text{min}}-1)$ | $-2.9^{+2.1}_{-0.7}$         | $-2.92_{-0.75}$     | $-3.0^{+2.0}_{-0.6}$ | $-2.94_{-0.76}$     | $-3.0^{+3.1}_{-0.8}$ |
| $\log_{10}(\eta/M_P)$                            | $-1.25^{+0.31}$              | $-2.0^{\pm 0.8}$    | -0.8                 | $-2.0^{\pm 0.7}$    | -0.8                 |
| n                                                | 0+0.6                        | 0+0.6               | 0+0.5                | 0+0.6               | 0 <sup>+0.6</sup>    |
| $\log_{10}(\phi_i/\eta)$                         | 0.5-3.3                      | 0.5-3.0             | 0.5-2.0              | 0.5-2.9             | 0.5-1.5              |
| H <sub>0</sub>                                   | $67.05^{+0.62}_{-0.77}$      | $67.77 \pm 0.39$    | $67.62 \pm 0.45$     | $68.08 \pm 0.36$    | $68.31 \pm 0.33$     |
| $\Omega_{m0}$                                    | $0.3177^{+0.0095}_{-0.0078}$ | $0.3075 \pm 0.0049$ | $0.3091 \pm 0.0053$  | $0.3036 \pm 0.0046$ | $0.3006 \pm 0.0042$  |
| σ <sub>8</sub>                                   | $0.8056^{+0.0070}_{-0.0079}$ | $0.8049 \pm 0.0062$ | $0.8042 \pm 0.0067$  | $0.8052 \pm 0.0059$ | $0.8035 \pm 0.0059$  |
| S <sub>8</sub>                                   | $0.831 \pm 0.012$            | $0.8149 \pm 0.0091$ | $0.8163 \pm 0.0090$  | $0.8100 \pm 0.0089$ | $0.8042 \pm 0.0080$  |
| DIC                                              | $5498.13 \pm 0.54$           | $5507.87 \pm 0.13$  | $6210.08 \pm 0.35$   | $6218.58 \pm 0.01$  | $6478.21 \pm 0.53$   |
| WAIC                                             | $5499.03 \pm 0.53$           | $5508.42 \pm 0.15$  | $6210.85 \pm 0.03$   | $6219.12 \pm 0.29$  | $6481.97 \pm 0.92$   |
| $-\ln B$                                         | $5499.74 \pm 0.99$           | $5509.2 \pm 2.4$    | $6210.17 \pm 0.04$   | $6219.09 \pm 0.20$  | $6482.8 \pm 2.8$     |
| ΔDIC                                             | $0.23 \pm 0.59$              | $0.66 \pm 0.41$     | $0.74 \pm 0.39$      | $0.81 \pm 0.51$     | $0.83 \pm 0.63$      |
| ΔWAIC                                            | $-0.06 \pm 0.77$             | $0.56 \pm 0.24$     | $0.48 \pm 0.45$      | $0.43 \pm 0.39$     | $0.81 \pm 0.97$      |
| $-\Delta \ln B$                                  | $0.4 \pm 1.6$                | $1.0 \pm 2.4$       | $-0.35 \pm 0.52$     | $-0.1 \pm 1.7$      | $2.9 \pm 3.2$        |

Table 3. Mean and standard deviation of cosmological parameters, late-time observables, and statistical probes for the axion-like dark energy model in section 2. From left to right are gradually larger datasets of CMB, CMB + BAO, CMB + BAO + SNe, etc., as defined in section 3.1. AICs are with respect to ACDM model presented in table 2. For parameters not following Gaussian distribution we provide the median and 6% lower and upper bounds (if valid) instead, with color coding for how heavy the tail is (red for short tail, black for Gaussian, blue for exponential, and cyan for long tail.) For single-sided distributions we report the model and the single-sided 6% bound instead.

#### H.-W. Chiang, C.G. Boiza and M.B.-L.: arxiv:2503.04898

#### Fitting the model-3-

|                                 | BAO                   | SNe + low-z               | DES Y1                  |
|---------------------------------|-----------------------|---------------------------|-------------------------|
| $10^{3}\Omega_{c0}h^{2}$        | $111 \pm 11$          | $116 \pm 29$              | $107^{+15}_{-10}$       |
| $10^5 \theta_{MC}$              | $1036 \pm 12$         | $1081^{+15}_{-18}$        | $1048^{+36}_{-38}$      |
| $\ln(10^{10}A_s)$               |                       | -10                       | $3.47^{+0.27}_{-0.29}$  |
| $\log(\rho_{DE,0}/V_{min} - 1)$ | $-2.8^{+2.1}_{-0.6}$  | $-0.08^{+0.80}_{-0.95}$   | $-1.0^{+1.8}_{-1.6}$    |
| $\log(\eta/M_P)$                | $-0.89^{+0.56}$       | 0.5_1.0                   | -0.3_10                 |
| n                               | 0.4                   | 0+0.5                     | 0.4                     |
| $\log (\phi_i / \eta)$          | 0.5-3.2               | -1.4                      | 0.5 - 2.9               |
| $H_0$                           | $68.5^{+1.0}_{-1.4}$  | $73.0 \pm 1.3$            | $70.4 \pm 5.5$          |
| $\Omega_{m0}$                   | $0.291 \pm 0.016$     | $0.281^{+0.043}_{-0.053}$ | $0.266 \pm 0.046$       |
| $\sigma_8$                      |                       |                           | $0.862 \pm 0.093$       |
| $S_8$                           |                       |                           | $0.802 \pm 0.031$       |
| DIC                             | $8.53 \pm 0.12$       | $703.54 \pm 0.33$         | $260.86 \pm 0.72$       |
| WAIC                            | $8.26 \pm 0.21$       | $703.40 \pm 0.45$         | $262.36 \pm 0.68$       |
| $-\ln B$                        | $8.33 \pm 0.26$       | $703.56 \pm 0.11$         | $262.26 \pm 0.29$       |
| ΔDIC                            | $0.08 \pm 0.14$       | $0.17 \pm 0.34$           | $0.2 \pm 1.1$           |
| ΔWAIC                           | $-0.24 \pm 0.27$      | $0.09 \pm 0.46$           | $-0.27 \pm 0.69$        |
| $-\Delta \ln B$                 | $-0.53 \pm 0.48$      | $0.07 \pm 0.17$           | $-0.10 \pm 0.98$        |
| Tension against                 | CMB                   | CMB + BAO                 | CMB + BAO + SNe + low-z |
| R                               | $1.2 \pm 2.8$         | $6.3 \pm 2.8$             | $1.5 \pm 2.8$           |
| GoF                             | $2.33 \pm 0.25\sigma$ | $4.20 \pm 0.23\sigma$     | $2.93 \pm 0.35\sigma$   |
| S                               | $2.08 \pm 0.41\sigma$ | $3.96 \pm 0.26\sigma$     | $1.86 \pm 0.47\sigma$   |
| $\Delta R$                      | $1.2 \pm 3.1$         | $-1.2 \pm 3.2$            | $3.1 \pm 3.5$           |
| $\Delta GoF$                    | $0.39 \pm 0.39\sigma$ | $-0.10 \pm 0.30\sigma$    | $0.39 \pm 0.46\sigma$   |
| $\Delta S$                      | $0.40 \pm 0.45\sigma$ | $-0.10 \pm 0.31\sigma$    | $0.26 \pm 0.48\sigma$   |

Table 6. Mean and standard deviation of cosmological parameters, late-time observables, and statistical probes for the axion-like dark energy model in section 2. From left to right are datasets of BAO, SNe + low-z, and DES Y1. AICs and delta of tension probes are with respect to ACDM model presented in table 5. Tension probes of  $-\ln R$ , GoF and S are with respect to axion-like dark energy model inside table 4 according to "Tension against" row. For parameters not following Gaussian distribution we provide the median and 68% lower and upper bounds (if valid) instead, with colour coding for how heavy the tail is (red for short tail, black for Gaussian, blue for exponential, and cyan for long tail.) If the distribution is clearly single-sided we report the modal and the single-sided 68% bound instead.

#### **Observables-1-**



Figure 8. The dark energy equation of state  $w_0$  (kep), density parameters (centre) of radiation 0. (blue), matter  $\Omega_0$  (withou) and take energy  $\Omega_0$  (upped) as functions of a dyo, and d  $\rho_0$  (ketton) as functions of z for 600 samples drawn from individual fits. Left figures: Models fittel against CBB dataset. Right figures: Models fittel against CBB + BAO dataset. Fack: fine denotes ACDM model and noc-black lines denote the axio-rilke dark energy model. Without additional distance measurement, CAB dataset along permits variation of the density parameter solutions as depicted in Fig. 2. However, once BAO dataset is included, the density parameter satalilies and the tracking regime has to ond before  $a/a_0 = 1$ . In solution figures, the  $b/\rho$  stata are taken from table 2 of [76].



(a) CMB TT power spectrum

Figure 9. The best fit CMB TT power spectrum (top) and the residue (bottom) angiants best fit ACDM model TT power spectrum of CMB dataset. Top: The best fit CMB TT power spectrum of ACDM model and the data from Planck Cam5per PR4 data release in Fig. 6 of [16], Bottom: Black dotted line and red datted line denote ACDM model fitted against CAB and CAB + BAO datasets respectively, and yellow avoid line and thus avoid line denote axion-like dark energy model fitted against CMB and CAB + BAO datasets respectively. There are no visible difference between two models.

#### **Observables-3-**



Figure 11. The best fit matter power spectrum (*top*) and the residue (*tottom*) against best fit  $\Lambda$ CDM model matter power spectrum of CMB dataset. *Top:* Sofii lines represents the linear power spectrum and the *dotted* lines represents the nonlinear power spectrum. Matter power spectrum data taken from Fig. 1 of [7], *Bottom:* Black *dosbed* line and red *dotted* line denote ACDM model fitted against CMB and CMB – BAO datasets respectively, and *quives sofii* line and bus solid line denotes axion-like dark energy model fitted against CMB and CMB + BAO datasets respectively. There are no visible difference between three best fit models.

# Speeding up with fields

Late-time acceleration of the universe within Kinetic Gravity Braiding theories

### Kinetic gravity Braiding theories

• The gravitational action (Deffayet, Pujolas, Sawiki and Vikman,arXiv: 1008.0048 [hep-th]. Published in JCAP 2010 ) :

$$S = \int d^4 \mathbf{x} \sqrt{-g} \left[ \frac{1}{2} R + \mathbf{K}(\phi, \mathbf{X}) - \mathbf{G}(\phi, \mathbf{X}) \Box \phi \right]$$

- Passes constraints from GR170817
- Essential mixing
- (Im)Perfect fluid
- Self-tuning de Sitter solution
- (Subdominant) Phantom behaviour without ghost nor gradient instabilities (where the equation of state of the scalar field < -1)
- We will assume the shift-symmetric case: the action is invariant under  $\phi \to \phi + c$  where c is a constant
- Our goal is to analyse the future evolution of the shift-symmetric Kinetic Gravity Braiding theories and see if we can have dominant phantom behaviour without ghost and gradient instabilities. (Borislavov,

Bouhmadi-López, and Martín-Moruno arXiv:2210.07276, 2212.02547, 2406.12576, PLB 2023, JCAP 2023, Phys. Dark Univ.

- Conserved shift current:  $J = \dot{\phi} K_X + 6XG_X H$
- Background gravitational equations:
  - Friedmann eq:  $3H^2 = \rho_m + \rho_r K + \dot{\phi}J$
  - Raychaudhuri eq:  $\dot{H} = -\frac{1}{2} \left( \rho_m + \frac{4}{3} \rho_r \right) + X G_X \ddot{\phi} \frac{1}{2} \dot{\phi} J$
- Conservation equations:
  - $\dot{\rho}_m = -3H\rho_m$
  - $\dot{\rho}_r = -4H\rho_r$
  - $\dot{J} = -3HJ$ , therefore,  $J = Q_0 \left(\frac{a}{a_0}\right)^{-3}$ .

# A dynamical system approach: **suitable** definition of the variables

• The matter dimensionless variables reads

$$\Omega_r \coloneqq \frac{\rho_r}{3H^2},$$
$$\Omega_m \coloneqq \frac{\rho_m}{3H^2},$$
$$\Omega_\phi \coloneqq \frac{\epsilon\sqrt{2X}J - h}{3H^2}$$

- We assume  $\Omega_{\phi}$  to be positive since we are mainly interested in the future attractors of expanding FLRW models. Hence,  $\Omega_i \in [0, 1]$  for  $i \in \{r, m, \phi\}$ .
- We carry out our analysis for expanding solutions; i.e. H positive

$$\frac{H}{H_0} = \frac{h}{1-h^2} \longrightarrow h \in [0,1]$$

- Through the above definition we obtain new solutions that were overlooked previously.
- The Friedmann constraint reads:  $\Omega_r + \Omega_m + \Omega_\phi = 1$

#### A dynamical system approach: evolution of the system

• Evolution:

$$h' = \frac{(1-h^2)h}{1+h^2}C_1,$$
  

$$\Omega'_r = -2\Omega_r (2+C_1),$$
  

$$\Omega'_{\phi} = C_2 - 2\Omega_{\phi}C_1,$$

• Auxiliary functions:

$$C_1 := \frac{H'}{H}, \qquad C_2 := \frac{\epsilon \sqrt{2X}}{H^2} (HG_X X' - J)$$

• Equations of state:

$$w_{\mathrm{eff}} \coloneqq rac{P_{\mathrm{tot}}}{
ho_{\mathrm{tot}}} = -1 - rac{2}{3}C_1, \qquad w_{\phi} \coloneqq rac{P_{\phi}}{
ho_{\phi}} = -1 - rac{1}{3\Omega_{\phi}}C_2.$$

• A prime stands for derivative respect to ln(a).

#### A dynamical system approach: fixed points

- 1. Vacuum solutions dominated by matter or the scalar field:  $(h^{\rm fp} = \Omega_r^{\rm fp} = 0, \ C_1^{\rm fp} \neq -2 \text{ and } C_2^{\rm fp} = 2C_1^{\rm fp}\Omega_{\phi}^{\rm fp})$
- 2. Vacuum solutions where radiation like effects dominates the nearby evolution of the system, i.e.  $w_{\rm eff}^{\rm fp} = 1/3$ . Scaling solutions for the scalar field. ( $h^{\rm fp} = 0$ ,  $C_1^{\rm fp} = -2$  and  $C_2^{\rm fp} = -4\Omega_{\phi}^{\rm fp}$ ):
- 3. Cosmological singularities (Ex. BR) ( $h^{fp} = 1$ ,  $\Omega_r^{fp} = 0$ ,  $C_1^{fp} \neq -2$ and  $C_2^{fp} = 2C_1^{fp}\Omega_{\phi}^{fp}$ )
- 4. Initial cosmological singularities. It is a radiation dominated regime  $(w_{\rm eff}^{\rm fp} = 1/3)$ .  $(h^{\rm fp} = 1, C_1^{\rm fp} = -2 \text{ and } C_2^{\rm fp} = -4\Omega_{\phi}^{\rm fp})$
- 5. de Sitter solutions Ex.  $(h^{fp} \neq \{0,1\}, \Omega_r^{fp} = 0 \text{ and } C_1^{fp} = C_2^{fp} = 0)$ :

| Fixed Point             | $(h^{\rm fp},\Omega^{\rm fp}_\phi,\Omega^{\rm fp}_r)$        | $w^{\mathrm{fp}}_{\phi}$ | $w^{\rm fp}_{\rm eff}$ | $\beta < - \tfrac{1}{2}$ | $\beta=-\tfrac{1}{2}$ | $-\tfrac{1}{2} < \beta < -\tfrac{1}{4}$ | $\beta = -rac{1}{4}$              | $-\tfrac{1}{4} < \beta < 0$ | $0 \ 0 < \beta < \frac{1}{2}$ | $\beta = \frac{1}{2}$ | $\frac{1}{2} < \beta$ |
|-------------------------|--------------------------------------------------------------|--------------------------|------------------------|--------------------------|-----------------------|-----------------------------------------|------------------------------------|-----------------------------|-------------------------------|-----------------------|-----------------------|
| P <sub>1</sub> (vacuum) | (0, 0, 0)                                                    | $\frac{1}{4\beta}$       | 0                      | saddle                   | saddle                | saddle                                  | saddle                             | saddle                      | attractor                     | attractor             | attractor             |
| P <sub>2</sub> (vacuum) | (0, 1, 0)                                                    | $\frac{1}{4\beta+1}$     | $\frac{1}{4\beta+1}$   | attractor                |                       | saddle                                  |                                    | saddle                      | saddle                        |                       | saddle                |
| P <sub>3</sub> (vacuum) | (0, 0, 1)                                                    | $\frac{1}{6\beta}$       | $\frac{1}{3}$          | saddle                   | saddle                | saddle                                  | saddle                             | saddle                      | saddle                        | _                     | saddle                |
| $P_4$ (BB)              | (1, 0, 0)                                                    | $\frac{1}{4\beta}$       | 0                      | saddle                   | saddle                | saddle                                  | saddle                             | saddle                      | saddle                        | saddle                | saddle                |
| $P_5$ (BB/BR)           | (1, 1, 0)                                                    | $\frac{1}{4\beta+1}$     | $\frac{1}{4\beta+1}$   | saddle                   |                       | attractor                               | _                                  | repeller                    | repeller                      | _                     | saddle                |
| $P_6$ (BB)              | (1, 0, 1)                                                    | $\frac{1}{6\beta}$       | $\frac{1}{3}$          | repeller                 | repeller              | repeller                                | repeller                           | repeller                    | saddle                        | _                     | repeller              |
| $P_7$ (BF)              | (1, 1, 0)                                                    | $-\infty$                | $-\infty$              |                          |                       | _                                       | $\operatorname{attractor}^{\star}$ | _                           |                               |                       |                       |
| $L_1(dS)$               | $(h^{\mathrm{fp}}, 1, 0)$                                    | $^{-1}$                  | $^{-1}$                |                          | attractor             | _                                       |                                    | _                           |                               |                       |                       |
| L <sub>2</sub> (sudden) | $(h^{\rm fp},-4\beta,\Omega_r^{\rm fp})$                     | $-\infty$                | $-\infty$              | _                        |                       | _                                       |                                    | $attractor^*$               | _                             | _                     | _                     |
| L <sub>3</sub> (vacuum) | $(0, \Omega^{\mathrm{fp}}_{\phi}, \Omega^{\mathrm{fp}}_{r})$ | $\frac{1}{3}$            | $\frac{1}{3}$          |                          |                       | _                                       |                                    |                             |                               | saddle                |                       |
| $L_4$ (BB)              | $(1, \Omega^{\mathrm{fp}}_{\phi}, \Omega^{\mathrm{fp}}_{r})$ | $\frac{1}{3}$            | $\frac{1}{3}$          | _                        |                       | —                                       | _                                  | _                           | _                             | repeller              | _                     |

TABLE I. Classification and linear stability of the fixed points of our model. A superscript "fp" indicates evaluation at the fixed point. A horizontal bar denotes that the corresponding fixed point does not exist. The physical interpretation of each point is shown in brackets where BB stands for Big Bang and BF for Big Freeze. The labels L<sub>1</sub>, L<sub>2</sub>, L<sub>3</sub> and L<sub>4</sub> represent sets of non-isolated fixed points where h<sup>fp</sup> can take any values. In addition,  $\Omega_r^{fp} \in [0, 1 + 4\beta]$  holds for L<sub>2</sub>, and  $\Omega_{\phi}^{fp} + \Omega_r^{fp} = 1$  for L<sub>3</sub> and L<sub>4</sub>. The starred quantities designate fixed points that have eluded our dynamical system analysis because of the choice of the dynamical variables but whose existence and stability follows directly from the Friedmann equations. **Proxy model:** K(X) = 0 and  $G(X) = c_G X^{\beta}$ 



**Proxy model:** K(X) = 0 and  $G(X) = c_G X^{\beta}$ 



FIG. 2. Numerical evolution of the dynamical system (19)-(21) for  $\beta = -2/5$  with the same initial conditions as in figure 1. Top panel: the variable h and the partial densities  $\Omega_i$  for  $i = \{m, r, \phi\}$ . Bottom panel: the effective equation of state parameter  $w_{\text{eff}}$  and the equation of state parameter  $w_{\phi}$  for the scalar field.

- 1. At zero order (background): the system is stable, i.e. there are attractor solutions.
- 2. At first order: (at least for the simplest model we have analysed) a tachyonic or a ghost issue can arise and they are complementary; i.e. if we avoid one, the other one shows up. We think the tachyonic one is more problematic as it can affect the large scale structure. The other one can be shown to be avoided when quantising gravity and the matter fields (WdW approach).
- 3. At second order: the scalar perturbations could feed an overproduction of gravitational waves.

Teodor Borislavov, Mariam Bouhmadi-López, and Prado Martín-Moruno arXiv:2406.12576, Phys. Dark Univ. 2024

## Speeding up with fields

Late-time acceleration through a 3-form field

- Can we have something beyond scalar fields to describe DE?
  - A possibility come in the form of 3-forms.
  - Inspired in supergravity and string theory: Aurilia, Nicolai, Townsend (1980), Copeland, Lahiri,Wands (1995)
  - Massless 3-form as Cosmological Constant (solving CC problem): Turok, Hawking (1998)
  - Inflation or late time acceleration driven by self-interacting 3-forms: Koivisto, Nunes (2009) and (2010)
  - Non-Gaussianity: Kumar, Mulryne, Nunes, Marto, Moniz (2016)
  - Quantum cosmology with 3-forms: Bouhmadi-López, Brizuela, Garay (2018)
  - DE models (quintessence like and phantom as well): Morais, Bouhmadi-López, Kumar, Marto, Tavakoli, Phys. Dark Univ., arXiv: 1608.01679 , Bouhmadi-López, Marto, Morais and Silva, JCAP, arXiv: 1611.03100 M.B.-L, H.-W. Chiang, C.G. Boiza and P. Chen: work in progress (the observational fit)

A *p*-form is a totally anti-symmetric covariant tensor:

$$\omega_{\mu_1\dots\mu_p} = \omega_{[\mu_1\dots\mu_p]}$$

In D-dimensions, the number of degrees of freedom of a massive p-form is

degrees of freedom = 
$$\frac{(D-1)!}{(D-1-p)!p!}$$
.

C. Germani and A. Kehagias, J. Cosmol. Astropart. Phys. 2009, 28 (2009) Part of the section is based on Morais, B.L. Kumar, Marto and Tavakoli, Phys. Dark Univ. 15, 7 (2017) [arXiv:1608.01679 [gr-qc]] In a 4-dimensional space-time:

- p = 0 (scalar field)  $\Rightarrow 1$  degree of freedom
- p = 1 (vector field)  $\Rightarrow$  3 degrees of freedom
- $p = 2 \Rightarrow 3$  degrees of freedom
- $p = 3 \Rightarrow 1$  degree of freedom

 $\Rightarrow$  The scalar field and the 3-form are the only ones compatible with a homogeneous and isotropic universe (in an easy way).

C. Germani and A. Kehagias, J. Cosmol. Astropart. Phys. 2009, 28 (2009)

T. S. Koivisto, D. F. Mota, and C. Pitrou, J. High Energy Phys. 2009, 92 (2009)

 We will consider the following action for a massive 3-form, A<sub>μνρ</sub>, minimally coupled to gravity

$$S^{A} = \int \mathrm{d}^{4}\mathbf{x} \sqrt{|\det g_{\mu\nu}|} \left[ -\frac{1}{48} F^{\mu\nu\rho\sigma} F_{\mu\nu\rho\sigma} - V \left( A^{\mu\nu\rho} A_{\mu\nu\rho} \right) \right]$$

- The strength tensor, a 4-form, is defined through the exterior derivative:  $F_{\mu\nu\rho\sigma} \equiv 4\nabla_{[\mu}A_{\nu\rho\sigma]}$
- The equation of motion, obtained from variation of  $S^A$ , is

$$\nabla_{\sigma} F^{\sigma}{}_{\mu\nu\rho} - 12 \frac{\partial V}{\partial (A^2)} A_{\mu\nu\rho} = 0$$

•  $\Rightarrow$  a massless 3-form is equivalent to a cosmological constanst

- T. S. Koivisto, D. F. Mota, and C. Pitrou, J. High Energy Phys. 2009, 92 (2009)
- M. Duff and P. Van Nieuwenhuizen, Phys. Lett. B 94, 179 (1980)

C. Germani and A. Kehagias, J. Cosmol. Astropart. Phys. 2009, 28 (2009)

We consider a homogeneous and isotropic universe described by the Friedmann-Lemaître-Robertson-Walker line element

$$ds^2 = -dt^2 + a^2(t)\gamma_{ij}dx^i dx^j \,.$$

- t cosmic time,  $\{\dot{}\} = d\{\}/dt$
- a scale factor

 $x^i$  - comoving spatial coordinates (roman indices run from 1 to 3).

Only the purely spatial components of the 3-form are dynamical:

$$A_{0ij} = 0$$
,  $A_{ijk} = a^3(t)\chi(t)\epsilon_{ijk}$ .

T. S. Koivisto, D. F. Mota, and C. Pitrou, J. High Energy Phys. 2009, 92 (2009) Koivisto and Nunes PLB [arXiv:0907.3883], idem PRD [arXiv:0908.0920]  $\Rightarrow$  Friedmann Equation

$$3H^2 = \kappa^2 \rho_{\chi} = \kappa^2 \left[ \frac{1}{2} \left( \dot{\chi} + 3H\chi \right)^2 + V(\chi^2) \right] \,.$$

 $\Rightarrow$  Raychaudhuri equation

$$\dot{H} = -\frac{\kappa^2}{2} \left( \rho_{\chi} + P_{\chi} \right) = -\frac{\kappa^2}{2} \chi \frac{\partial V}{\partial \chi} \,.$$

A 3-form can show phantom-like behavior if  $\partial V / \partial \chi^2 < 0$ .  $\Rightarrow$  Equation of motion

$$\ddot{\chi} + 3H\dot{\chi} + 3\dot{H}\chi + \frac{\partial V}{\partial \chi} = 0.$$

Combining the Raychaudhuri equation and the equation of motion for  $\chi$ :

$$\ddot{\chi} + 3H\dot{\chi} + \left(1 - \frac{\chi^2}{\chi_c^2}\right)\frac{\partial V}{\partial \chi} = 0.$$

The static solutions are:

- the critical points of the potential:  $\frac{\partial V}{\partial \chi} = 0$ ,
- the limiting points:  $\chi = \pm \chi_c$ .

Once inside the interval  $[-\chi_c, \chi_c]$ , the field  $\chi$  evolves towards a local minimum of V.

## 3-form Cosmology: evolution of $\chi$ -2-

• Independently of the shape of a regular potential, in absence of DM interaction, the 3-form decays rapidly towards the interval

 $[-\chi_c,~\chi_c]$  Koivisto and Nunes PLB [arXiv:0907.3883], idem PRD [arXiv:0908.0920]

• In an expanding Universe, once inside the interval  $[-\chi_c, \chi_c]$ , the 3-form will end up in one of the minima of the potential (notice  $V_{\text{eff}} \neq V$ ).

• If the 3-form stops at the limits of this interval:

 $\chi = \pm \chi_c$  and  $\dot{\chi} = 0$ 

•  $\longrightarrow$  Universe heads towards a LSBR event  $(\chi_c = \sqrt{2/3\kappa^2})$ 



# 3-forms & with a Gaussian potential: a dynamical system approach

Using a Dynamical Systems representation Morais *et al* PofDU [arxiv:1608.01679]; BL *et al*, JCAP [arXiv:1611.03100]

$$u = (\pi/2) \arctan(\chi/\chi_c)$$
  $y = (\dot{\chi} + 3H\chi)/(3H\chi_c)$   $z = \sqrt{\kappa^2 V/3H^2}$ 

- Three matter era points: two repulsive -  $(\pm 1, 0, 0)$ one saddle - (0, 0, 0)
- One potential dom. **de Sitter** point: saddle - (0, 0, 1)
- Two LSBR event points: attractor (±1/2,±1,0)
- Four **unphysical** points: saddles (±1, ±1, 0)



Fixed points in the non-interacting case

#### Fitting the model with a Gaussian potential-1-



C.G. Boiza, M.B.-L, H.-W. Chiang and P. Chen work in progress (2025)

#### Comparing the model to LCDM



C.G. Boiza, M.B.-L, H.-W. Chiang and P. Chen work in progress (2025)

#### Fitting the model with a Gaussian potential-2-



C.G. Boiza, M.B.-L, H.-W. Chiang and P. Chen work in progress (2025)

#### Fitting the model with a Gaussian potential-3-



C.G. Boiza, M.B.-L, H.-W. Chiang and P. Chen work in progress (2025)

#### Fitting the model with a Gaussian potential-4-

|                          | CMB                 | + BAO               | + SNe               | + low-z             | + DES Y1            |
|--------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| $10^{3}\Omega_{b0}h^{2}$ | $22.19 \pm 0.13$    | $22.29 \pm 0.12$    | $22.26 \pm 0.12$    | $22.34 \pm 0.12$    | $22.38 \pm 0.12$    |
| $10^{3}\Omega_{c0}h^{2}$ | $119.7 \pm 1.0$     | $118.26 \pm 0.81$   | $118.56 \pm 0.79$   | $117.80 \pm 0.76$   | $117.27 \pm 0.72$   |
| $10^5 \theta_{MC}$       | $1040.77 \pm 0.25$  | $1040.94 \pm 0.24$  | $1040.91 \pm 0.24$  | $1041.01 \pm 0.24$  | $1041.05 \pm 0.24$  |
| $\ln(10^{10}A_s)$        | $3.037 \pm 0.014$   | $3.044 \pm 0.014$   | $3.043 \pm 0.014$   | $3.047 \pm 0.014$   | $3.046 \pm 0.014$   |
| n <sub>s</sub>           | $0.9636 \pm 0.0040$ | $0.9672 \pm 0.0036$ | $0.9665 \pm 0.0036$ | $0.9685 \pm 0.0036$ | $0.9693 \pm 0.0036$ |
| $\tau_{relo}$            | $0.0524 \pm 0.0071$ | $0.0571 \pm 0.0071$ | $0.0562 \pm 0.0070$ | $0.0587 \pm 0.0071$ | $0.0589 \pm 0.0071$ |
| H <sub>0</sub>           | $67.24 \pm 0.46$    | $67.89 \pm 0.36$    | $67.76 \pm 0.35$    | $68.12 \pm 0.34$    | $68.36 \pm 0.32$    |
| $\Omega_{m0}$            | $0.3154 \pm 0.0064$ | $0.3064 \pm 0.0048$ | $0.3082 \pm 0.0047$ | $0.3034 \pm 0.0044$ | $0.3003 \pm 0.0042$ |
| $\sigma_8$               | $0.8077 \pm 0.0055$ | $0.8064 \pm 0.0056$ | $0.8067 \pm 0.0056$ | $0.8061 \pm 0.0057$ | $0.8041 \pm 0.0055$ |
| $S_8$                    | $0.828 \pm 0.011$   | $0.8149 \pm 0.0090$ | $0.8176 \pm 0.0090$ | $0.8107 \pm 0.0087$ | $0.8044 \pm 0.0080$ |
| DIC                      | $5497.90 \pm 0.12$  | $5507.21 \pm 0.37$  | $6209.34 \pm 0.14$  | $6217.77 \pm 0.43$  | $6477.38 \pm 0.28$  |
| WAIC                     | $5499.09 \pm 0.50$  | $5507.85 \pm 0.18$  | $6210.36 \pm 0.21$  | $6218.68 \pm 0.21$  | $6481.16 \pm 0.22$  |
| $-\ln B$                 | $5499.3 \pm 1.1$    | $5508.13 \pm 0.73$  | $6210.51 \pm 0.44$  | $6219.1 \pm 1.4$    | $6479.9 \pm 1.2$    |

Table 2. Mean and standard deviation of cosmological parameters, late-time observables, and statistical probes for ACDM model. From left to right are gradually larger datasets that progressively add in datasets of CMB, BAO, etc., as defined in section 4.1.

|                                                     | CMB                          | + BAO                   | + SNe                   | + low-z                 | + DES Y1                |
|-----------------------------------------------------|------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| $10^{3}\Omega_{b0}h^{2}$                            | $22.18 \pm 0.13$             | $22.26 \pm 0.13$        | $22.24 \pm 0.12$        | $22.25 \pm 0.14$        | $22.30 \pm 0.13$        |
| $10^3\Omega_{c0}h^2$                                | $119.7 \pm 1.1$              | $118.75 \pm 0.93$       | $118.96 \pm 0.86$       | $118.89\pm0.96$         | $118.46 \pm 0.98$       |
| $10^5 \theta_{MC}$                                  | $1040.77 \pm 0.25$           | $1040.88 \pm 0.24$      | $1040.86 \pm 0.24$      | $1040.88 \pm 0.25$      | $1040.90 \pm 0.23$      |
| $\ln(10^{10}A_s)$                                   | $3.036 \pm 0.014$            | $3.042 \pm 0.014$       | $3.040 \pm 0.014$       | $3.038 \pm 0.014$       | $3.037 \pm 0.015$       |
| $n_s$                                               | $0.9638 \pm 0.0040$          | $0.9663 \pm 0.0037$     | $0.9657 \pm 0.0036$     | $0.9661 \pm 0.0038$     | $0.9666 \pm 0.0039$     |
| $\tau_{reio}$                                       | $0.0520 \pm 0.0072$          | $0.0554 \pm 0.0072$     | $0.0543 \pm 0.0071$     | $0.0535 \pm 0.0071$     | $0.0532 \pm 0.0081$     |
| $\log_{10}(\xi/M_P)$                                | 1.6                          | 1.6                     | 1.7                     | 1.7                     | 1.7                     |
| $(KE_i + V_0)/\rho_{DE,0}$                          | $1.0000 \pm 0.0021$          | $1.0002 \pm 0.0027$     | $1.0000 \pm 0.0017$     | $1.0004 \pm 0.0020$     | $1.0006 \pm 0.0038$     |
| $\log_{10}(a_i^3 \chi_i / \xi)$                     | $-2.3^{+0.6}$                | $-1.6^{+0.3}$           | $-1.86^{+0.69}_{-0.59}$ | $-1.27^{+0.28}_{-0.21}$ | $-1.23^{+0.27}_{-0.23}$ |
| $(\dot{\chi}_i + 3H_i\chi_i)\rho_{crit,h=1}^{-1/2}$ | $0.01 \pm 0.15$              | $0.01 \pm 0.17$         | $0.002 \pm 0.063$       | $-0.005 \pm 0.073$      | $0.01 \pm 0.14$         |
| H <sub>0</sub>                                      | $67.57^{+0.58}_{-0.75}$      | $68.29^{+0.56}_{-0.61}$ | $68.02^{+0.45}_{-0.46}$ | $68.99 \pm 0.59$        | $69.28 \pm 0.59$        |
| $\Omega_{m0}$                                       | $0.3116^{+0.0090}_{-0.0075}$ | $0.3030 \pm 0.0059$     | $0.3062 \pm 0.0052$     | $0.2980 \pm 0.0053$     | $0.2946 \pm 0.0052$     |
| $\sigma_8$                                          | $0.8076^{+0.0060}_{-0.0063}$ | $0.8080 \pm 0.0069$     | $0.8061 \pm 0.0064$     | $0.8098 \pm 0.0073$     | $0.8091 \pm 0.0065$     |
| $S_8$                                               | $0.822^{+0.013}_{-0.011}$    | $0.8120 \pm 0.0093$     | $0.8144 \pm 0.0089$     | $0.8070 \pm 0.0088$     | $0.8018 \pm 0.0084$     |
| DIC                                                 | $5498.84 \pm 0.18$           | $5507.37 \pm 0.30$      | $6209.55 \pm 0.22$      | $6216.47 \pm 0.42$      | $6476.1 \pm 1.1$        |
| WAIC                                                | $5499.41 \pm 0.03$           | $5507.90 \pm 0.14$      | $6210.12 \pm 0.15$      | $6217.18 \pm 0.74$      | $6479.18 \pm 0.00$      |
| $-\ln B$                                            | $5499.9 \pm 1.4$             | $5507.66 \pm 0.06$      | $6212.9 \pm 1.9$        | $6217.94 \pm 0.91$      | $6475.61 \pm 0.06$      |
| ΔDIC                                                | $0.94 \pm 0.24$              | $0.15 \pm 0.53$         | $0.21 \pm 0.28$         | $-1.30 \pm 0.66$        | $-1.3 \pm 1.2$          |
| ΔWAIC                                               | $0.32 \pm 0.59$              | $0.05 \pm 0.26$         | $-0.25 \pm 0.29$        | $-1.50 \pm 0.79$        | $-1.98 \pm 0.26$        |
| $-\Delta \ln B$                                     | $0.6 \pm 1.9$                | $-0.46 \pm 0.86$        | $2.4 \pm 2.0$           | $-1.2 \pm 2.0$          | $-4.3 \pm 1.4$          |

Table 3. Mean and standard deviation of cosmological parameters, late-time observables, and statistical probes for the 3-form dark energy model in section 2. From left to right are gradually larger datasets of CMB, CMB + BAO, CMB + BAO + SNe, etc., as defined in section 4.1.  $\Delta$ ICs are with respect to  $\Lambda$ CDM model presented in table 2. For parameters not following Gaussian distribution we provide the median and 65% lower and upper bounds (if vialdi) instead, with color coding for how heavy the tail is (red for short tail, black for Gaussian, blue for exponential, and cyam for long tail.) For single-sided distributions we report the modal and the single-sided 65% bound instead.

# Modified theory within f(Q) gravity

#### Geometry of Spacetime: Metricity vs Non-Metricity

- We assume a space-time endowed with a metric g<sub>µν</sub> and a symmetric connection Γ<sup>λ</sup><sub>µν</sub>, i.e. NO torsion:
- What is metricity, and how does it differ from non-metricity?

#### **Metric Compatibility**

 $\nabla_{\lambda}g_{\mu\nu} = 0$ 

The covariant derivative of the metric tensor vanishes, meaning the length of vectors is preserved under parallel transport. Then the connection is uniquely determined by the metric and is given by the Levi-Civita connection.

#### Non-Metricity Tensor

$$Q_{\lambda\mu\nu} = \nabla_{\lambda}g_{\mu\nu} \neq 0$$

Represents the failure of the connection to preserve the metric under parallel transport. Therefore, the lenght of a vector may change.

#### Curvature of Spacetime: Metricity vs Non-Metricity

• The scalar curvature of a space-time endowed with a metric  $g_{\mu\nu}$  and a symmetric connection  $\Gamma^{\lambda}_{\mu\nu}$  can be written as:

 $R(\Gamma) = \mathcal{R}(\{\}) + Q + surface terms,$ 

where

$$\begin{split} \mathcal{Q} &:= -\frac{1}{4} \mathcal{Q}_{\alpha \mu \nu} \mathcal{Q}^{\alpha \mu \nu} + \frac{1}{2} \mathcal{Q}_{\alpha \mu \nu} \mathcal{Q}^{\mu \alpha \nu} + \frac{1}{4} \mathcal{Q}_{\alpha} \mathcal{Q}^{\alpha} - \frac{1}{2} \mathcal{Q}_{\alpha} \tilde{\mathcal{Q}}^{\alpha} \\ \mathcal{Q}_{\alpha} &:= \mathcal{Q}_{\alpha \mu}{}^{\mu} \qquad \tilde{\mathcal{Q}}_{\alpha} := \mathcal{Q}_{\mu \alpha}{}^{\mu} . \end{split}$$

- For a vanishing  $R(\Gamma)$  a theory with Lagrangian density linear on  $\mathcal{R}(\{\})$ , is equivalent to a theory with Lagrangian density linear in Q.
- The former statment does not apply to  $f(\mathcal{R}(\{\}))$  and f(Q) because of the surface term.
- This gives rise to f(Q) gravity as a new avenue of exploration, particularly from a phenomenological perspective, for example.

• The gravitational action:

$$S=\int d^4x\sqrt{-g}\left[f(Q)+\mathcal{L}_M\right].$$

- The equations of motion are deduced by varying the action with respect to the metric and the connection.
- The energy momentum tensor for matter is conserved.

J. Beltrán Jiménez, L. Heisenberg, and T. S. Koivisto, arXiv:1803.10185 (proposer of the theories)

R. Lazkoz, F. S. N. Lobo, M. Ortiz-Baños, and V. Salzano, arXiv:1907.13219 (among the first cosmological fits)

#### **FLRW** cosmology in f(Q) gravity

• The metric:

$$\mathrm{d}s^2 = -N(t)\mathrm{d}t^2 + a^2(t)\left[\mathrm{d}r^2 + r^2\left(\mathrm{d}\theta^2 + \sin^2\theta\mathrm{d}\phi^2\right)\right] ,$$

- The connection must be consistent with the symmetries of the FLRW metric; it should also be symmetric and satisfy the flatness condition, i.e.  $R(\Gamma) = 0$ .
- There are three possible connections that satisfy the above criteria, highlighting the richness of the theory.
- From now on, we shall adopt the simplest choice for the connection, maintaining the FLRW metric in its standard form.

F. D'Ambrosio, L. Heisenberg, and S. Kuhn, arXiv:2109.04209, I. Ayuso, M. B.-L., C.-Y. Chen, X. Y. Chew, K. Dialektopoulos, Y. C. Ong, arXiv:2109.04209

### Suitable f(Q) models for cosmology-1-

• Friedmann and Raychauduri equations:

$$6f_Q H^2 - \frac{1}{2}f = \rho_m \qquad (12H^2 f_{QQ} + f_Q)\dot{H} = -\frac{1}{2}(\rho_m + p_m).$$

• The conservation equation:

$$\dot{\rho}_m + 3H(\rho_m + p_m) = 0.$$

• Three potential candidates:

$$\begin{array}{lll} f_1(Q) &=& Q \exp{(\lambda Q_0/Q)}, \\ f_2(Q) &=& Q + Q_0 \exp{(-\lambda Q_0/Q)}, \\ f_3(Q) &=& Q + \lambda Q_0 [1 - \exp{(-Q_0/Q)}]. \end{array}$$

- All these models give rise to late-time acceleration.
- The first model previously analysed in F. K. Anagnostopoulos, S. Basilakos and E. N.Saridakis, arXiv:2104.15123 [gr-qc].

### Suitable f(Q) models for cosmology-2-



C.G. Boiza, M. Petronikolou, M.B.-L, E. N. Saridakis, arXiv:2505.18264

- The analysis is performed for three different combinations of datasets:
  - Combination I: Cosmic chronometers (CC), supernovae (SN), and gamma-ray bursts (GRB);
  - **Combination II:** Baryon acoustic oscillations (BAO) and and redshift-space distortions (RSD);
  - Combination III: Full combination (CC + SN + GRB + BAO + RSD).

#### Fitting the model-1-



C.G. Boiza, M. Petronikolou, M.B.-L. and E. N. Saridakis: arXiv:2505.18264

#### Fitting the model-2-

| Model                  | $H_0$            | $\Omega_{m0}$       | $r_d$             | $S_8$               | $\Delta AIC$ |  |  |  |  |
|------------------------|------------------|---------------------|-------------------|---------------------|--------------|--|--|--|--|
|                        | CC + SN + GRB    |                     |                   |                     |              |  |  |  |  |
| $f_3(Q)$               | $68.91 \pm 1.90$ | $0.3495 \pm 0.0241$ | _                 | _                   | -0.23        |  |  |  |  |
| $f_2(Q)$               | $69.20 \pm 1.84$ | $0.2616 \pm 0.0160$ | -                 | -                   | 1.67         |  |  |  |  |
| $f_1(Q)$               | $68.76 \pm 1.85$ | $0.3497 \pm 0.0200$ | -                 | -                   | 0.17         |  |  |  |  |
| $\Lambda \mathrm{CDM}$ | $68.89 \pm 1.86$ | $0.3027 \pm 0.0198$ | -                 | -                   | -            |  |  |  |  |
|                        | BAO + RSD        |                     |                   |                     |              |  |  |  |  |
| $f_3(Q)$               | -                | $0.3015 \pm 0.0133$ | -                 | $0.7206 \pm 0.0285$ | 2.63         |  |  |  |  |
| $f_2(Q)$               | -                | $0.3013 \pm 0.0156$ | -                 | $0.7856 \pm 0.0294$ | 0.51         |  |  |  |  |
| $f_1(Q)$               | -                | $0.2877 \pm 0.0132$ | -                 | $0.7270 \pm 0.0263$ | 2.30         |  |  |  |  |
| $\Lambda \text{CDM}$   | -                | $0.2937 \pm 0.0142$ | -                 | $0.7567 \pm 0.0279$ | -            |  |  |  |  |
|                        |                  | CC + SN + GRI       | 3 + BAO + R       | SD                  |              |  |  |  |  |
| $f_3(Q)$               | $70.31 \pm 1.71$ | $0.3163 \pm 0.0117$ | $147.09 \pm 3.49$ | $0.7280 \pm 0.0270$ | 6.08         |  |  |  |  |
| $f_2(Q)$               | $68.01 \pm 1.67$ | $0.2827 \pm 0.0109$ | $147.62\pm3.46$   | $0.7773 \pm 0.0280$ | 5.19         |  |  |  |  |
| $f_1(Q)$               | $70.56 \pm 1.69$ | $0.3080 \pm 0.0113$ | $146.98 \pm 3.43$ | $0.7361 \pm 0.0264$ | 8.90         |  |  |  |  |
| $\Lambda CDM$          | $69.15 \pm 1.73$ | $0.2958 \pm 0.0115$ | $147.33 \pm 3.57$ | $0.7580 \pm 0.0271$ | -            |  |  |  |  |

TABLE III: Mean values and standard deviations of the cosmological parameters obtained for each f(Q) model, namely  $f_1(Q) = Q \exp(\lambda Q_0/Q)$ ,  $f_2(Q) = Q + Q_0 \exp(-\lambda Q_0/Q)$ , and  $f_3(Q) = Q + \lambda Q_0[1 - \exp(-Q_0/Q)]$ , and for ACDM paradigm, under the three different dates combinations considered in this work: Combination I (CC + SN + GRB), Combination II (BAO + RSD), and Combination III (CC + SN + GRB + BAO + RSD). The parameter  $S_8$  is derived from the fitted value of  $\sigma_8$ . The last column shows the AIC difference,  $\Delta AIC \equiv AIC_{f(Q)} - AIC_{ACDM}$ , quantifying the statistical preference relative to the ACDM model.

#### Fitting the model-3-



FIG. 3: Comparison of the two-dimensional posterior distributions obtained from Combination 1/(CC + SN + GRB)and Combination 1/(BAO + RSD) for each model separately. The conducts correspond to the 685 m and 587 confidence tevels (C.L.). The top-left panel shows the results for ACDM scenario, which displays excellent agreement between the two dataset combinations. The remaining panels correspond to Models 1/(Cp-ipkl), 2/ (dottion-left), and 3/ (bottom-right), where a clear tension between the two combinations emerges in the  $\Omega_{aa}$ —H<sub>0</sub> plane. These internal inconsistencies contribute to the power global H<sub>0</sub> solutioned by the 1/(Q) models when all datasets are combined.

# Conclusions

#### Conclusions

- We have introduced an axion-like model that mimics a dynamical cosmological constant through a tracking regime, providing a fit as good as ACDM while also addressing the coincidence problem.
- We have described DE through a field encoded on a DE KGB model or a 3-form field. The 3-form field with a Gaussian potential can alliviate the H<sub>0</sub> tension.
- We have also discussed several f(Q) models, highlighting the impact that  $G_{\text{eff}}$  can have on certain cosmological observables, and how useful these models can be in alleviating the  $H_0$  and  $S_8$  tensions.
- We are currently analysing certain extensions of the  $\Lambda_{\rm s}{\rm CDM}$  model (0. Akarsu, S. Kumar, E. Özülker, J. A. Vázquez, arXiv:2108.09239), and the initial fits appear promising (in collaboration with B. Ibarra, arXiv:2506.12139, arXiv:2506.18992).
- In a different work (M. Benetti, P. Morilla, M-B.-L., S. Capozziello, arXiv:2507.XXXX), We are analysing some special cases related to the mGCG.

Thank you for your attention !!!

#### Fitting the model-2-



H.-W. Chiang, C.G. Boiza and M.B.-L.: arxiv:2503.04898

#### Fitting the model-3-



H.-W. Chiang, C.G. Boiza and M.B.-L.: arxiv:2503.04898

#### Fitting the model-4-



H.-W. Chiang, C.G. Boiza and M.B.-L.: arxiv:2503.04898

#### Fitting the model-5-



H.-W. Chiang, C.G. Boiza and M.B.-L.: arxiv:2503.04898

#### Fitting the model with a Gaussian potential-2-



C.G. Boiza, M.B.-L, H.-W. Chiang and P. Chen work in progress (2025)

#### Fitting the model with a Gaussian potential-3-



C.G. Boiza, M.B.-L, H.-W. Chiang and P. Chen work in progress (2025)

# Further consideration with 3-forms from a gravitational point of view

Let me add that 3-forms can be quite interesting for further reasons as:

- They allow naturally for regular BHs (Bouhmadi-López, Chen, Chew, Ong and Yeom, arXiv: 2005.13260 [gr-qc]. Published in EPJC 2021 )
- They naturally support wormholes without changing the sign of the kinetic energy (Bouhmadi-López, Chen, Chew, Ong and Yeom, arXiv: 2108.07302 [gr-qc]. Published in JCAP 2021).

The Little Sibling of the Big Rip (LSBR) is a cosmological event that happens at infinite time and is characterised by

- $a(t \to \infty) \to +\infty$ ,
- $H(t \to \infty) \to \infty$ ,
- $\dot{H}(t \to \infty) \to \text{constant}.$

In general, this can be obtained with an equation of state:

$$p = -\rho - A$$
  $(A > 0).$ 

Solving the conservation equation we find  $H^2 \propto \log(a)$  and  $\dot{H} = (\kappa^2/2)A$  (asymptotically).

M.B.L, A. Errahmani, P. Martín-Moruno, T. Ouali, and Y. Tavakoli, Int. J. Mod. Phys. D 24, 1550078 (2015)