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Introduction




Introduction-1-: A brief sketch of the universe

e The universe is homogeneous and isotropic on large scales
(cosmological principle)
e The matter content of the universe:

e Standard matter
e Dark matter
e Something that induce the late-time acceleration of the

Universe

e The acceleration of the universe is backed by several
measurments: H(z), Snela, BAO, CMB, LSS (matter power

spectrum, growth function)...



Introduction-2-

e The effective equation of state of whatever is driving the current

speed up of the universe is roughly -1.

e Such an acceleration could be due to:

e A new component of the energy budget of the universe: dark energy;
i.e. it could be A (i.e. a non dynamical dark energy), quintessence,
of a phantom(-like/effective) nature

e A change on the behaviour of gravity on the largest scale. No new
component on the budget of the universe but rather simply gravity
modifies its behaviour, within a metric, Palatini (affine metric), in

presence of torsion or non-metricity ....



Cosmol al problems

e If Ais driving the current acceleration of the Universe, then:

e Coincidence problem. How is this sensible to initial conditions?

e Why now? Dark energy seems to be dominant only at late-time, not
before.

o Fine-tuning problem. New energetic scale pp ~ 107* GeV *. It is

very small compared to other scales.

e Cosmological tensions, in particula the Hubble tension.

e How might evolving dark energy models or extended theories of
gravity help to address the issues discussed above?

E. Di Valentino et al. [arXiv:2504.01669 [astro-ph.CO]]



Speeding up with fields




Speeding up with fields

Quintessence through a genealised axion-like potential



Quintessence

e Minimally coupled canonical scalar field:

1
_ gV
L= 2sz 58" V0udVu6 = V(9) + Lrm.

¢ is a dynamical field.
e Coincidence problem. It can be alleviated by scaling solutions and
tracker fields.
e Fine-tuning problem remains unsolved.
e Some quintessence models allow for a natural explanation of why
now?
e Could the tensions Hp and Sg been alleviated?
e An axion-like potential: V/(¢) = A*[1 — cos(¢/n)]~" with a
generalisation to negative exponents, i.e. 0 < n.
e Previously analised on the context of wave dark matter and early
dark €NErgY Wave Dark Matter (L. Hui). [arXiv:2101.11735], Dark energy from the string axiverse (M.

Kamionkowski). [arXiv:1409.0549 ]

This part of the pat of the talk is based on C.G. Boiza, M.B.-L, H.-W. Chiang, 2409.18184, 2410.22467 (Phys. Dark Univ), 2503.04898 5



Dynamical system

e Dynamical variables (FLRW filled by rad., mat. and an axion-like

field):
. ko
wo KoKV Ve oup kv
V6H V/3H kV V3H

e Matter part: Q,, =1 — x? — y2 — Z2,

e Autonomous closed system of equations:

w

1
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Point X y z A Weff Stability
Ay 0 0 0 Any 0 Saddle
Az 0 0 1 Any 1/3 Saddle
E 0 1 0 0 -1 (Un)Stable if n >0 (n < 0)




Tracking behaviour

Unique evolution of ¢. It does not depend on the initial conditions.

Tracking regime given by wy =~ const.

e Tracking with wg > w: it could happen, but it is disregarded
(structure formation suppression). Here w stands for EoS of
radiation or matter.

e Tracking with wy, < w: I > 1 and I = const. in the regime
A> 1.

_w—=2(M-1)
wqg—m.



Axion-like potential

V(¢) = N*[1 — cos(¢/n)]~". M) = & Sn(o/m)
Generalisation to n > 0 kn 1—cos(é/n)

20 —n=1
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e Cosmological constant in the limit n — 0.
e Minimum at ¢/n =7 — V = Vi + %m2(¢) — 71)? where
Vinin = A*/2" and m? = nA\*/(27H192).

e 0i,i/n < 1in order to have non-trivial evolution — A\;,; > 1.



Fixed points and tracking

e Fixed points: A, Ay and E (minimum of the potential). E is an
attractor — Late-time acceleration.

o F(A)zl—}—%ﬂ—km. In the regime A>>1: T~ 1+ & —
Tracking behaviour with wy < w.

e Tracking regime given by wg ~ —% = —lin (w=0).

n=1 wy~-05

Yo
o
o

log alag log alag
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Matter power spectrum

Matter power spectrum suppression:
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fo8 behaviour

fo8 distribution:
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ting the model-1-
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H.-W. Chiang, C.G. Boiza and M.B.-L.: arxiv:2503.04898
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Comparing the model
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Fitting the model-2-

18 118,
04004+ 024 | 104001 £ 0.24
304420014 | 304320014

0.21
3046 % 0.014
0.0693  0.0036
0.0389 £ 0.0071

3
0.3003 = 0.0042
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WAIC 5499.09 £ ( TR LIS 621868 £ 0.21
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Table 2 n and standard deviation of cosmological parameters, late-time observables,

statistical probes for ACDM model. From left to right are gradually larger datasets that progeess
1 in datasets of CMB, BAO, etc., as defined in section 3.1

BAOQ SNe DES V1
B TEoR 2 012 B L0z
18295080 | 11840 117.2:
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Table 3 Mean and standard deviation of cosmological parameters. late-time observables, and

statistical probes for the axion-like dark energy model in section 2. From left to right are gradually
larger datasets of CMB, CMB + BAO, CMB — BAO  SNe, etc. as defined in section 3.1, AICs are
with respect to ACDM model presented in table 2. For parameters not following Gaussian distribution
we provide the median and 68% lower and upper bounds (if valid) instead, with color coding for how
hv.\\y the tail is (red for short tail, black for Gaussian, blue for

xponential, and cyan for long tail )
For single-sided distributions we report the modal and the single-sided 63% bound instead
15
H.-W. Chiang, C.G. Boiza and M.B.-L.: arxiv:2503.04898



Fitting the model-3-

BAO DES Y1
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R 6.3+ 2.8 2
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AR T2T31 31E35
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AS 0.40 £ 0.450 —0.10 + 0.31a 0.26 + 0.48c
Table 6. Mean and standard deviation of cosmological parameters, late-time observables, and

statistical probes for the axion-like dark energy model in section 2. From left to right are datasets of
BAO. SNe + low-z. and DES Y1. AICs and delta of tension probes are with respect to ACDM model
presented in table 5. Tension probes of — In R, GoF Alld S are with respect to axion-like dark energy
model inside table 4 according to “Tension against” row. For parameters not following Gaussian
distribution we provide the median and 68% lower and upper bounds (if valid) instead, with colour
coding for how heavy the tail is (red for short tail. black for Gaussian, blue for exponential. and

for long tail.) If the distribution is clearly single-sided we report the modal and the single-sided 68%
bound instead.

H.-W. Chiang, C.G. Boiza and M.B.-L.: arxiv:2503.04898

16



Observables-1-
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Observables-2-
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Figure 9. The best fit CMB TT power spectrum (top) and the residue (bottom) against best fit
ACDM model TT power spectrum of CMB dataset. Top: The best fit CMB TT power spectrum
of ACDM model and the data from Planck CamSpee PR4 data release in Fig. 6 of [16]. Bottom
Black dotted line and red dotted line denote ACDM model fitted against CMB and CMB ~ BAO
datasets respectively, and solid line and blue sofid line denotes axion-like dark energy model
fitted against CMB and CMB — BAO datasets respectively. There are no visible difference between
two models
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Observables-3-
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Figure 11.  The best fit matter power spectrum (fop) and the residue (bottom) against best fit
ACDM model matter power spectrum of CMB dataset. Top: Solid lines represents the linear power
spectrum and the dotfed lines represents the nonlinear power spectrum. Matter power spectrum data
taken from Fig. 1 of [79]. Bottom: Black dashed line and red doticd line denote ACDM model fitted
against CMB and CMB + BAO datasets respectively, and salid line and blue solid line denotes
axion-like dark energy model fitted against CMB and CMB = BAO datasets respectively. There are
sible difference between three best fit models
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Speeding up with fields

Late-time acceleration of the universe within Kinetic
Gravity Braiding theories



Kinetic gravity Braiding theories

e The gravitational action (Deffayet, Pujolas, Sawiki and Vikman,arXiv: 1008.0048 [hep-th]. Published in

JCAP 2010 ) o

S= /d“x\/fg BR + K(¢, X) — G(¢, X)O

e Passes constraints from GR170817

e Essential mixing

e (Im)Perfect fluid

e Self-tuning de Sitter solution

e (Subdominant) Phantom behaviour without ghost nor gradient
instabilities (where the equation of state of the scalar field < —1)

o We will assume the shift-symmetric case: the action is invariant
under ¢ — ¢ + ¢ where c is a constant

e Our goal is to analyse the future evolution of the shift-symmetric
Kinetic Gravity Braiding theories and see if we can have dominant
phantom behaviour without ghost and gradient instabilities. (sorisiavor,
Bouhmadi-Lépez, and Martin-Moruno arXiv:2210.07276, 2212.02547, 2406.12576, PLB 2023, JCAP 2023, Phys. Dark Univ.

2024) 20



Background dynamics

e Conserved shift current: J = ¢5KX + 6XGxH

e Background gravitational equations:

o Friedmann eq: 3H?> = pn+ pr — K + q'SJ

e Raychaudhuri eq: H= f% (p,,, + %p,) + XGx¢ — %qﬁJ
e Conservation equations:

e pm= —3Hpm

e pr = —4Hp,

o J = —3HJ, therefore, J = Qo (i>_3.

21



A dynamical system approach: definition of the vari-

ables

The matter dimensionless variables reads

_ Pr
2 = 3H2'
— Pm
m = 3H2'
evV2XJ— K
Q¢ —_—————————————
3H2

We assume Qg to be positive since we are mainly interested in the
future attractors of expanding FLRW models. Hence, Q; € [0, 1] for

i€{r,m, ¢}

We carry out our analysis for expanding solutions; i.e. H positive
H h
—=—— —he|0,1
Hy 1—h? [0.1]

Through the above definition we obtain new solutions that were
overlooked previously.

The Friedmann constraint reads: Q, + €, + Qg =1 -



A dynamical system approach: evolution of the system

e Evolution:
" (1 — h?)h
14 h?
Q =-2Q,02+G),
Q;,) =G — 204G,

C17

e Auxiliary functions:

e A prime stands for derivative respect to In(a). ’



A dynamical system approach: fixed points

1. Vacuum solutions dominated by matter or the scalar field:
(hP =Qff =0, C # -2 and CJ° = 2CPQ)
2. Vacuum solutions where radiation like effects dominates the nearby

evolution of the system, i.e. Weff = 1/3. Scaling solutions for the
scalar field. (hP =0, CP = —2 and C}* = —4QP):

3. Cosmological singularities (Ex. BR) (h? =1, Q =0, C{P # =2
f fp o
and G =2G°Q))
4. Initial cosmological singularities. It is a radiation dominated regime
f f f f
(weg = 1/3). (WP =1, G’ = =2 and G’ = —4Q7)
5. de Sitter solutions Ex. (A # {0,1}, Q® =0 and CIP = C/? = 0):

Teodor Borislavov, Mariam Bouhmadi-Lépez, and Prado Martin-Moruno arXiv:2210.07276, 2212.02547, PLB 2023, JCAP 2023

24



Fixed Point (h®, QP 0F) wP wh p<-1 p=-1 -L<p<-1 p=-1 -l<p<o0<p<}i B=3 +<8

»
Py (vacuum) (0,0,0) ﬁ 0  saddle saddle saddle saddle saddle attractor attractor attractor
P2 (vacuum) (0,1,0) Fre ﬁ attractor ~ — saddle — saddle saddle — saddle
P3 (vacuum) (0,0,1) % 3+ saddle  saddle saddle saddle saddle saddle — saddle
P, (BB) (1,0,0) ﬁ 0  saddle saddle saddle saddle saddle saddle  saddle saddle
P; (BB/BR) (1,1,0) wlﬂ 4dl+l saddle — attractor — repeller repeller — saddle
Ps (BB) (1,0,1) é 2 repeller repeller repeller repeller repeller saddle — repeller
Pr (BF) (1,1,0) —o0 —oo — — — attractor” — — — —
L;(dS) (h?,1,0) -1 -1 —  attractor — — — — — —

L, (sudden) (h'P,—48,0%) —cc —oo — — — — attractor* — — —

Ly (vacuum)  (0,QF, QF) 3 : — — — — — — saddle —
L; (BB) (Lofaf L 1 — — — — — — repeller  —

TABLE I. Classification and linear stability of the fixed points of our model. A superscript “fp” indicates evaluation at the
fixed point. A horizontal bar denotes that the corresponding fixed point does not exist. The physical interpretation of each
point is shown in brackets where BB stands for Big Bang and BF for Big Freeze. The labels Ly, Lz, Lz and L, represent sets
of non-isolated fixed points where A can take any values. In addition, QP € [0, 1+ 4] holds for Ly, and Q'f +QF =1 for Ly
and Ls. The starred quantities designate fixed points that have eluded our dynamical system analysis because of the choice of
the dynamical variables but whose existence and stability follows directly from the Friedmann equations.
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Proxy model: K(X) =0 and G(X) = ccX”




Proxy model: K(X
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FIG. 2. Nur

ical evolution of the dynamical system (19)-

(21) for 8 = —2/5 with the same initial conditions as in figure

1. Top panel: the variable h and the partial densities €2, for

i = {m.r.p}. Bottom panel: the effective equation of state

parameter w.g and the equation of state parameter wy for 27
the scalar field.




Stability of the system at the pertubative level

1. At zero order (background): the system is stable, i.e. there are
attractor solutions.

2. At first order: (at least for the simplest model we have analysed) a
tachyonic or a ghost issue can arise and they are complementary; i.e.
if we avoid one, the other one shows up. We think the tachyonic one
is more problematic as it can affect the large scale structure. The
other one can be shown to be avoided when quantising gravity and
the matter fields (WdW approach).

3. At second order: the scalar perturbations could feed an
overproduction of gravitational waves.

Teodor Borislavov, Mariam Bouhmadi-Lépez, and Prado Martin-Moruno arXiv:2406.12576, Phys. Dark Univ. 2024
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Speeding up with fields

Late-time acceleration through a 3-form field



Can we have something beyond scalar fields to describe DE?

e Can we have something beyond scalar fields to describe DE?

e A possibility come in the form of 3-forms.

e Inspired in supergravity and string theory: Aurilia, Nicolai, Townsend
(1980), Copeland, Lahiri,Wands (1995)

e Massless 3-form as Cosmological Constant (solving CC problem):
Turok, Hawking (1998)

e Inflation or late time acceleration driven by self-interacting 3-forms:
Koivisto, Nunes (2009) and (2010)

e Non-Gaussianity: Kumar, Mulryne, Nunes, Marto, Moniz (2016)

e Quantum cosmology with 3-forms: Bouhmadi-Lépez, Brizuela, Garay
(2018)

® DE models (quintessence like and phantom as well): Morais, Bouhmadi-Lépez, Kumar, Marto, Tavakoli, Phys. Dark
Univ., arXiv: 1608.01679 , Bouhmadi-Lépez, Marto, Morais and Silva, JCAP, arXiv: 1611.03100 M.B.-L, H.-W.

Chiang, C.G. Boiza and P. Chen: work in progress (the observational fit)

29



What are p-forms?

A p-form is a totally anti-symmetric covariant tensor:

Wy = Wlarooopp] -
In D-dimensions, the number of degrees of freedom of a massive p-form is

(D —1)!

degrees of freedom = (D—1—p)p"

C. Germani and A. Kehagias, J. Cosmol. Astropart. Phys. 2009, 28 (2009)
Part of the section is based on Morais, B.L, Kumar, Marto and Tavakoli, Phys. Dark Univ. 15, 7 (2017) [arXiv:1608.01679 [gr-qc]]
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p-forms in mology

In a 4-dimensional space-time:

e p =0 (scalar field) = 1 degree of freedom
e p =1 (vector field) = 3 degrees of freedom
e p =2 = 3 degrees of freedom

e p =3 =1 degree of freedom

= The scalar field and the 3-form are the only ones compatible with a
homogeneous and isotropic universe (in an easy way).

C. Germani and A. Kehagias, J. Cosmol. Astropart. Phys. 2009, 28 (2009)
T.'S. Koivisto, D. F. Mota, and C. Pitrou, J. High Energy Phys. 2009, 92 (2009)

31



The 3-form action

e We will consider the following action for a massive 3-form, A
minimally coupled to gravity

1
= / d*xy/| det gy | [—%FWWFWU - V(A’“”’AWP)} :

e The strength tensor, a 4-form, is defined through the exterior
derivative: Fj.p0 =4V, AL 0]

Qv ps

e The equation of motion, obtained from variation of SA s

i 2%
VO-F purp 12@/4;“,[) = 0

e = a massless 3-form is equivalent to a cosmological constanst

C. Germani and A. Kehagias, J. Cosmol. Astropart. Phys. 2009, 28 (2009)
T. S. Koivisto, D. F. Mota, and C. Pitrou, J. High Energy Phys. 2009, 92 (2009)
M. Duff and P. Van Nieuwenhuizen, Phys. Lett. B 94, 179 (1980)
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3-form Cosmology

We consider a homogeneous and isotropic universe described by the
Friedmann-Lemaftre-Robertson-Walker line element

ds? = —dt® + a%(t)y;dx'dx .
t - cosmic time, {} = d{}/dt
a - scale factor
x' - comoving spatial coordinates (roman indices run from 1 to 3).

Only the purely spatial components of the 3-form are dynamical:

Agj =0, A = @ (t)x(t)eji -

T. S. Koivisto, D. F. Mota, and C. Pitrou, J. High Energy Phys. 2009, 92 (2009)
Koivisto and Nunes PLB [arXiv:0907.3883], idem PRD [arXiv:0908.0920]
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3-form Cosmology: background equations

= Friedmann Equation

1
3H? = k2py = K7 | = (¢ +3HX)" + V(X?)

= Raychaudhuri equation
2 K2 OV

K
-— P)=——xy—.
2(/’)("’ x) 2X(9X

H =
A 3-form can show phantom-like behavior if 9V /dx? < 0.
=- Equation of motion

. . : oV
X+ 3Hx+3Hx+ — =0.
ox

34



3-form Cosmology: evolution of y-1-

Combining the Raychaudhuri equation and the equation of motion for y:

2\ oV
X+ 3HY + <1— ’(2) ~0.
xe/ 0x
The static solutions are:
. . ., oV
e the critical points of the potential: Ve 0,
X
e the limiting points: x = £ x..

Once inside the interval [—xc, x|, the field x evolves towards a local

minimum of V.

35



3-form Cosmology: evolution of y-2-

e Independently of the shape of a
regular potential, in absence of DM
interaction, the 3-form decays
rapidly towards the interval

[7XC, XC] Koivisto and Nunes PLB [arXiv:0907.3883)], idem

PRD [arXiv:0908.0920]

e In an expanding Universe, once
inside the interval [—xc, X, the
3-form will end up in one of the
minima of the potential (notice
Vet # V).

e If the 3-form stops at the limits of
this interval:

X = £Xc
e —— Universe heads towards a

LSBR event (xc = +/2/3k?)

and x =0

VIiVy
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3-forms & with a Gaussian potential: a dynamical system ap-

proach

Using a Dynamical Systems representation worais et ai Pofbu [ariv:1608.01679]; BL et al, JCAP

[arXiv:1611.03100]

u = (m/2)arctan(x/xc) y = (x+3Hx)/(3Hxc) z = +/Kk2V /3H?

e Three matter era points:
two repulsive - (+1,0,0)
one saddle - (0,0, 0)

e One potential dom. de Sitter

point:  saddle - (0,0, 1)

e Two LSBR event points:
attractor - (£1/2,+1,0)

e Four unphysical points:
saddles - (+1,£1,0)

Fixed pointe in the non-interactine cace



Fitting the model with a Gaussian potential-1-
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C.G. Boiza, M.B.-L, H.-W. Chiang and P. Chen work in progress (2025)
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Comparing the model to LCDM
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C.G. Boiza, M.B.-L, H.-W. Chiang and P. Chen work in progress (2025)
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Fitting the model with a Gaussian potential-2-
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Fitting the model with a Gaussian potential-3-
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Fitting the model with a Gaussian potential-4-
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Table 2. Mean and standard deviation of cosmological parameters, late-time observables, and

statistical probes for ACDM model. From left to right are gradually larger datasets that progressively
add in datasets of CMB, BAO, etc., as defined in section 4.1
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Table 3 Mean and standard deviation of cosmological parameters, late-time observables. and

statistical probes for the 3-form dark energy model in section 2. From left to right are gradually
larger datasets of CMB, CMB + BAO, CMB + BAO + SNe, etc.. as defined in section 4.1. AICs are
with respect to ACDM model presented in table 2. For parameters not following Gaussian distribution

we provide the median and 68% lower and upper bounds (if valid) instead, with color coding for how

heavy the tail is (red for short tail, black for Gaussian, blue for exponential, and for long tail.) 42
For single-sided distributions we report the modal and the single-sided 68% bound instead




Modified theory within f(Q) gravity




Geometry of Spacetime: Metricity vs Non-Metricity

e We assume a space-time endowed with a metric g, and a
symmetric connection rfw, i.e. NO torsion:

e What is metricity, and how does it differ from non-metricity?

Metric Compatibility

Vg =0

The covariant derivative of the metric tensor vanishes, meaning the
length of vectors is preserved under parallel transport. Then the
connection is uniquely determined by the metric and is given by the
Levi-Civita connection.

Non-Metricity Tensor

Qxpr = Vaguw #0

Represents the failure of the connection to preserve the metric
under parallel transport. Therefore, the lenght of a vector may
change.

J. M. Nester and H.-J. Yo, 1999
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Curvature of Spacetime: Metricity vs Non-Metricity

e The scalar curvature of a space-time endowed with a metric g,,,, and
a symmetric connection Ff;y can be written as:

R(M) = R({}) + Q + surface terms,

where
Q= — 7 Quuv Q" + 3 Qv Q" + 1 Qa Q™ — 3QuQ°
Qo = Q" Qo = Q"
e For a vanishing R(I') a theory with Lagrangian density linear on
R({}), is equivalent to a theory with Lagrangian density linear in Q.
e The former statment does not apply to f(R({})) and f(Q) because
of the surface term.
e This gives rise to f(Q) gravity as a new avenue of exploration,
particularly from a phenomenological perspective, for example.

J. Beltrdn Jiménez, L. Heisenberg, and T. S. Koivisto, arXiv:1803.10185
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e The gravitational action:

S / d*xv/=E [F(Q) + Lw].

e The equations of motion are deduced by varying the action with
respect to the metric and the connection.

e The energy momentum tensor for matter is conserved.
J. Beltrén Jiménez, L. Heisenberg, and T. S. Koivisto, arXiv:1803.10185 (proposer of the theories)

R. Lazkoz, F. S. N. Lobo, M. Ortiz-Bafios, and V. Salzano, arXiv:1907.13219 (among the first cosmological fits)
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FLRW cosmology in f(Q) gravity

e The metric:

ds? = —N(t)dt? + a%(t) [dr? + r? (d6? + sin® 8de?)]

e The connection must be consistent with the symmetries of the
FLRW metric; it should also be symmetric and satisfy the flatness
condition, i.e. R(I') = 0.

e There are three possible connections that satisfy the above criteria,
highlighting the richness of the theory.

e From now on, we shall adopt the simplest choice for the connection,
maintaining the FLRW metric in its standard form.

F. D'Ambrosio, L. Heisenberg, and S. Kuhn, arXiv:2109.04209, |. Ayuso, M. B.-L., C.-Y. Chen, X. Y. Chew, K. Dialektopoulos, Y. C.

Ong, arXiv:2109.04209
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Suitable f(QQ) models for cosmology-1-

e Friedmann and Raychauduri equations:

1 : 1
6fQH2—§f:pm (12H?foq + fo)H = — =

2(pm + Pm)'

The conservation equation:

pm + 3H(pm + pm) = 0.

Three potential candidates:

A(Q) = Qexp(AQo/Q),
H(Q) Q+ Qoexp(—AQo/Q),
((Q) = Q+ X[l —exp(—Qo/Q)]

e All these models give rise to late-time acceleration.
The first model preV|ous|y analysed IN F. K. Anagnostopoulos, S. Basilakos and E. N.Saridakis,
arXiv:2104.15123 [gr-qc] .

C.G. Boiza, M. Petronikolou, M.B.-L. and E. N. Saridakis: arXiv:2505.18264
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Suitable f(QQ) models for cosmology-2-

— LM _ (0 v

Qo
) L(Q/Qu) s
QYT
BQIQ) _ 10, 4 21— )
Qo
2 4 6 8 0
Q/Qo
1(Q/Qu 106N/
- /(u ) _ (/qnehane
12 b
F2(Q/Qu) A
Qo + ¢~2/Q
Q i
£(Q/Qu)
L) Q/Qq+ Mo(1 — @R
o Qo 2k E !
1.0
0.9
5 7 6 8 10
Q/Qo

C.G. Boiza, M. Petronikolou, M.B.-L, E. N. Saridakis, arXiv:2505.18264
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Observational constraints

e The analysis is performed for three different combinations of
datasets:

e Combination I: Cosmic chronometers (CC), supernovae (SN), and
gamma-ray bursts (GRB);

e Combination Il: Baryon acoustic oscillations (BAO) and and
redshift-space distortions (RSD);

e Combination IlI: Full combination (CC 4+ SN + GRB + BAO +
RSD).
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Fitting the model-1-

- ,(0)

- Q)
A(0)
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Ho Qmo

C.G. Boiza, M. Petronikolou, M.B.-L. and E. N. Saridakis: arXiv:2505.18264
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Fitting the model-2-

Model Ho Qmo Ta Ss AAIC

CC + SN + GRB
f5(Q)  68.91£1.90  0.3495 % 0.0241 - -
f2(Q) 6920184  0.2616 + 0.0160 - -
£(Q) 6876185  0.3497 £ 0.0200 - -
ACDM  68.89+1.86  0.3027 £ 0.0198 - - -

BAO + RSD
Q) - 0.3015 £ 0.0133 - 0.7206 £ 0.0285  2.63
£(Q) - 0.3013 £ 0.0156 - 0.7856 £ 0.0294
£Q) - 0.2877 £ 0.0132 - 0.7270 £0.0263  2.30
ACDM - 0.2937 £ 0.0142 - 0.7567 % 0.0279 -

CC + SN + GRB + BAO + RSD
f(Q) 7031171 0.3163+0.0117  147.09+3.49  0.7280 £ 0.0270
£2(Q)  68.01£1.67  0.2827 £ 0.0109 0.7773 £ 0.0280
H(Q) 70. 0.3080 £ 0.0113 0.7361 = 0.0264
ACDM  69.15+ 1.73  0.2958 £ 0.0115 0.7580 £ 0.0271 -

TABLE III: Mean values and standard deviations of the cosmological parameters obtained for each f(Q) model,
namely f1(Q) = Qexp(\Qu/Q), /2(Q) = Q + Qoexp (-AQo/Q). and f5(Q) = Q + Qo[L — exp (~Qo/Q)], and for
ACDM paradigm, under the three different dataset combinations considered in this work: Combination I (CC + SN
+ GRB). Combination IT (BAO + RSD), and Combination III (CC + SN + GRB + BAO + RSD). The parameter
Sg is derived from the fitted value of o5. The last column shows the AIC difference, AAIC = AICy(q) — AICxcDM,
quantifying the statistical preference relative to the ACDM model.

C.G. Boiza, M. Petronikolou, M.B.-L. and E. N. Saridakis: arXiv:2505.18264
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Fitting the model-3-
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fidence levels (C.L.). The top-left panel shows the results for ACDM scenario, which displays excellent agreement
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3 (bottom-right). where o clear tension between the two combinations emerges in the .0 — Hy plane. These internal
inconsistencies contribute lo the poorer global fits obtained by the f(Q) models when all datasets are combined.

52



Conclusions




Conclusions

We have introduced an axion-like model that mimics a dynamical
cosmological constant through a tracking regime, providing a fit as
good as ACDM while also addressing the coincidence problem.

We have described DE through a field encoded on a DE KGB model
or a 3-form field. The 3-form field with a Gaussian potential can
alliviate the Hy tension.

We have also discussed several f(Q) models, highlighting the impact
that Geg can have on certain cosmological observables, and how
useful these models can be in alleviating the Hy and Sg tensions.
We are currently analysing certain extensions of the A,CDM model
(O. Akarsu, S. Kumar, E. Ozilker, J. A. Vizquez, arxiv:2108.00230), and the initial fits appear
promising (in collaboration with B. Ibarra, arXiv:2506.12139, arXiv:2506.18992).

In a different work (M. Benetti, P. Morilla, M-B.-L., S. Capozziello, arXiv:2507.XXxX), W€ are
analysing some special cases related to the mGCG.

Thank you for your attention !!!
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Fitting the model-2-
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Fitting the model-3-
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Fitting the model-4-
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Fitting the model-5-
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Fitting the model with a Gaussian potential-2-
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C.G. Boiza, M.B.-L, H.-W. Chiang and P. Chen work in progress (2025)
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Fitting the model with a Gaussian potential-3-
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Further consideration with 3-forms from a gravitational point

of view

Let me add that 3-forms can be quite interesting for further reasons as:

e They allow naturally for regular BHs (gounmaditépez, Chen, Chew, Ong and Yeom, ariv:
2005.13260 [gr-qc]. Published in EPJC 2021 )

e They naturally support wormholes without changing the sign of the
kinetic energy (Bouhmadi—Lo’pez, Chen, Chew, Ong and Yeom, arXiv: 2108.07302 [gr-qc]. Published in JCAP

2021) o
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The Little Sibling of the Big Rip

The Little Sibling of the Big Rip (LSBR) is a cosmological event that
happens at infinite time and is characterised by

e a(t— o0) = 400,
o H(t— 00) — o0,

e H(t — c0) — constant.

In general, this can be obtained with an equation of state:
p=-p—A (A>0).

Solving the conservation equation we find H? o log(a) and H = (k2/2)A
(asymptotically).

M.B.L, A. Errahmani, P. Martin-Moruno, T. Ouali, and Y. Tavakoli, Int. J. Mod. Phys. D 24, 1550078 (2015)
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